DeepEX 用户手册

(2018版本)

目录

第一章: DeepEX 简介	1
1.1 关于 DeepEX (深基坑工程软件)	2
1.2 软件安装及其兼容性	2
1.3 技术支持	2
1.4 最终用户许可协议	2
1.5 软件激活	4
1.5.1 激活单机版许可证	4
1.5.2 激活网络版许可	4
第二章: DeepEX 使用	5
2.1 深基坑工程背景	6
2.2 使用 DeepEX	7
2.3 工具栏	8
2.3.1 工具栏菜单	8
2.3.2 墙列表,设计断面列表,项目树视图和 3D 模型	10
2.4 一般菜单	12
2.5 地震菜单	41
2.6 分析菜单	43
2.7 边坡稳定性菜单	60
2.8 稳定性+菜单	65
2.9 设计菜单	69
2.10 结果菜单	74
2.11 报告菜单	76
2.12 视图菜单	78
2.13 优化菜单	79
2.14 帮助菜单	82
第三章:数据输入	86
3.1 数据输入: 一般	87
3.2 设计规范	87
3.3 数据输入:项目信息	91
3.4 数据输入: 土体数据	92
3.5 数据输入: 土层	96
3.6 数据输入:水压力	97
3.7 数据输入: 墙体数据	98
3.7.1 数据输入: 墙截面	99
3.7.2: 墙体类型: 排桩	104
3.7.3 墙体类型: 板桩墙	107
3.7.4 墙体类型: 咬合桩和搭接桩	110
3.7.5 墙体类型: 地下连续墙	111
3.7.6 墙体类型: 型钢混凝土墙	115
3.7.7 墙体类型: 自定义	115
3.7.8 墙体类型: 组合板桩墙	117
3.8 数据输入: 锚杆	117

3.8.1 数据输入: 锚杆	.118
3.8.2 数据输入: 锚杆截面	.120
3.8.3 数据输入:螺旋锚杆截面	.122
3.9 数据输入:内支撑截面	.124
3.9.1 液压和机械支撑	.126
3.10 数据输入: 板截面和板支撑	.131
3.11 数据输入:固定支撑	.134
3.12 数据输入: 弹簧支撑	.134
3.13 数据输入: 边坡稳定性	.135
3.13.1 边坡稳定性分析	.135
3.13.2 土钉	.146
3.14 数据输入: 腰梁	.151
3.15 数据输入: 混凝土支座	.161
3.16 数据输入: 横梁支撑	.162
第四章:模型修改和结果查看	.165
4.1 修改地表标高	.166
4.2 图形化添加支撑	.169
4.3 图形化添加荷载	.171
4.4 在结果标签中查看结果	.173
4.5 报告选项(打印报告)	.178
4.6 基础荷载(三维荷载)	.179
4.7 建筑物和建筑物向导	.182
4.8 荷载选项	.187
4.9 项目造价预算模块	.190
4.10 三维模型(3D 框架分析模块)	.190
4.11 输出 DXF 文件(DXF 模块)	.204

第一章: DeepEX 简介

1.1 关于 DeepEX (深基坑工程软件)

DeepEX 软件用户界面友好,运算稳定,主要用于基坑工程的设计和分析。深基坑设计 是一项非常复杂的工作。设计人员必须考虑很多未知因素和影响开挖行为的因素。通常来说, 基坑开挖过程中有两种系统必须设计: A)挡土系统,例如,墙(钢板桩,地连墙等); B) 支撑系统,例如,内外支撑(冠梁,支撑或锚杆)。

对以上两个系统进行设计是一项很费时的工作,特别是当改变设计参数时。并且,目前 许多软件不能同时进行结构分析和岩土分析。这样导致设计人员必须使用多款软件分别分析 开挖过程和结构系统。除了有限元分析,很少有理论解能够计算复杂地层的土压力。因此, 对于同一个基坑,设计人员必须用不同的名称保存不同计算阶段,这使得整个分析过程费时 费力。DeepEX 解决了以上提到的大多数问题,并且既能进行结构分析又能进行岩土分析。 DeepEX 的当前版本同时提供了传统的分析方法和弹塑性地基梁方法。虽然传统的分析方法 在准确预测支挡系统真实行为上有各种各样的缺陷,但是它们为验证有限元计算结果是否可 靠,提供了一种对比方法。弹塑性地基梁方法能够更好的得到墙体真实行为。DeepEX 软件 的精妙之处就在于它能够同时进行传统方法和非线性分析方法,进而节约了大量时间进行有 限元分析。

1.2 软件安装及其兼容性

DeepEX 完全兼容 window (OS) XP, Vista7 和 8 系统, 硬盘容量 380Mb 以上。

1.3 技术支持

通过登录官方网站:www.deepexcavation.com 获得技术支持与服务

1.4 最终用户许可协议

使用条款/协议许可

具有法律效应的是双方(使用者和 Deep Excavation 公司)签订的许可协议。通过继续< 打开<下载程序,同意协议条款。(其中包括软件许可证,软件免责声明,以及硬件限制保证"集 体协议")

协议许可是用户和 Deep Excavation 公司之间完整的协议,如果您不同意许可协议中的 某些条款,不要选择"继续"。迅速返回或者删除属于 Deep Excavation 公司的软件(光盘 和案例)及其组件。如果您已缴费,可全额退款。

"软件许可证"适用于所有 DEEP EXCAVATION 程序的版本。

购买使用许可后可以免费使用 Deep excavation 软件。

软件许可证,购买 Deep Excavation 软件的价格中包含获得许可证的费用。Deep Excavation 公司作为许可方授权给用户许可证,使用者没有独自使用和展示软件复制品的权利。软件(以下所提的"软件"是指在当地一台单独的电脑上(单独使用一个 CPU))。 任何联网工作,在网络上运行这个程序是被禁止的。您作为使用许可人是严格禁止通过万维网、email、任何网站、网络工作站、任何多媒体设备、电子设备去管理、使用、转让、分配、关联、联网、链接或者任意方式操作这个软件,包括但不包括书面材料、结果、输出或者最终结果,出版未经 Deep Excavation 公司许可的资料。Deep Excavation 公司保留所有未

2

明确授予许可人的权利。

软件所有权:作为软件使用许可人。当您更换载有软件的硬件时,Deep Excavation 公司保留了在原始磁盘上记录的软件所有权信息和所有软件后期使用的数据,不管是什么形式的信息,副本信息都有可能存在。本授权不是原始软件的授权或者副本授权。

复制或修改权限:所有有版权的产品都是有版权保护的不能随意进行复制,如果拥有 Deep Excavation 公司的书面许可,那么就可以制作一个副本,包括完整的版权公告,免责 声明等。任何未授权的复制是违背许可协议,违背美国版权法的。你不能使用,转让,修改, 复制或复制许可产品或任何部分,除非是在最终用户许可协议中明确允许使用。

作为协议许可者,你可以将软件从一台电脑转移到另一台电脑上,但是软件只能在一 台机器上使用,不能同时多台电脑共同使用。不能通过网络将软件从一台计算机转移到另一 台计算机。你不能将软件的副本分发给其他人。你不得在互联网上,网络上,通过电子邮件, 任何网站、网络、多媒体设备、电子或其他或任何形式的电子媒体上操作、使用、转移、分 发、连接、链接、连接或操作。不可以基于软件进行修改、翻译、反向工程、反编译、分解 或创建派生作品 。此外,在没有事先的书面同意下您不能修改、调整、转换或创建软件自 动生成的书面材料 。

限制转让:这个软件只对您有授权,被许可人未经 Deep Excavation 公司的书面同意, 不得转让给任何人。软件授权的转让人应当受该软件的条款和条件的约束。在任何情况下, 你都不能转让、复制、出租、租赁、出售或处置软件,除非是明确提供的协议。

期限:此终端用户许可协议自您购买之日起生效,向你授权的产品,将持续生效直至终止。你可以在任何时候终止用户许可协议,将授权产品和所有备份一起销毁。除此之外,如果你不遵守协议中的条款或条件,将会终止用户许可协议。在此终止时,你将销毁许可人的所有副本产品。

免责声明和有限保证

软件和配套的书面材料(包括使用限制)如果有的话,就会被提供"原样"但没有任何 形式的担保,这里 Deep Excavation 公司不保证任何软件或书面材料使用及使用结果的正确性、 精准性、可靠性。关于软件的结果和性能的全部风险是由您自己承担。

Deep Excavation 公司授权的软件在没有任何缺陷等问题的情况下,在 60 天内需支付费用。

Deep Excavation 公司的全部责任和你对磁盘或硬件的补救办法是: (1) 返还购买全款, (2) 替换硬件。如果由于磁盘或硬件的故障导致事故、滥用或误用, Deep Excavation 不提供更换磁盘、硬件, 或者是退款服务。任何替换的磁盘或硬件都可获得 30 天的保修期。

以上内容是所有问题的唯一保证,无论是明示的还是默示的,包括但不限于对某一特 定目的的默示保证或适用性,没有任何口头或书面的信息或建议。经销商、代理人或雇员可 以以任何方式增加本担保的范围,但您不得依赖任何此类信息或建议。

在使用或不能使用该产品的情况下不管是 Deep Excavation 公司还是任何涉及到产品的人,或者购买产品的客户都有直接或间接的责任(包括对业务损失的损害赔偿利润、业务中断、业务信息丢失等等)。在任何情况下, Deep Excavation 公司被告知有可能造成这样的损害时,有执照的职业工程师都应该批准并对任何结果内容进行盖章验证,该工程师最终要对软件的任何结果或误用负责。

这一免责声明和有限的保证是由纽约州的法律管辖的。如果你对这份协议有任何疑问 请发邮件:

Deep Excavation 公司 deepexcavation@deepexcavation.com

1.5 软件激活

1.5.1 激活单机版许可证

激活软件许可, 需进行以下几步

- 1) 下载和安装软件
- 2) 按住 shift 键 (或者大写锁定 "Caps lock"键) 单击打开 DeepEX2018 软件
- 3) 电脑弹出如图 1.5.1 的窗口
- 4)将 site 和 MID 码以邮件的形式发给我们
- 5) 我们以邮件的形式将使用激活码发送给您
- 6)重新启动程序,进入 DeepEX 激活见面(选择打开应用程序选项输入激活码)。

	Activation panel	×
Site Code MID		
Activation code		
O Activate license	O Remove license	Enter application
	LICENSED	
This dialog controls the activation process for licen seeing this dialog check the following: a) That the network server where the network key is b) That other the maximum number of network user c) That your firewall is not blocking access to the s	ses locked to one specific computer. If you have a s accessible from your computer s is not reached erver	a network license and you are
Please make sure that you have administrative righ	ts during activation!	
Helpful links		
Visit the DeepEX official web page	Youtube training videos	
Click here to see a number of examples	Please click here to purchase your lic	enses online
	Exit	Continue >>
	1	

图 1.5.1 DeepEX 软件激活窗口

7)点击继续进入应用 这样所有的 DeepEX 模块都已被激活。

1.5.2 激活网络版许可

网络版许可证指令是在一个单独的手册中。

第二章: DeepEX 使用

2.1 深基坑工程背景

深基坑工程是在土体或岩石中开挖深度超过 4.5m 的基坑。深基坑工程需要仔细的设计和规划,特别是基坑位于拥挤的城市地区。一套合适的挡土系统和支撑系统的选择和设计对成本、时间和效益有非常重要的影响。

图 2.1 锚杆地连墙支护

深基坑工程设计两个主要系统: a)挡土系统和 b)支撑系统.悬臂墙没有支撑系统。

2.2 使用 DeepEX

DeepEX 是一款用户界面友好的软件,包含强大功能和多种选择。它可以同时考虑基坑的多个设计断面。从某种意义上说,一个设计断面就是一个设计方案。每一个设计断面可以 是独立的或者是相关的。通过这种方法,可以同时检查多种工况。创建开挖模型的一般流程 是:

- 1) 指定全局坐标。
- 2) 指定土体类型和材料属性。
- 3) 指定土层。
- 4) 创建水位线
- 5) 指定挡土墙系统
- 6) 创建支撑构件
- 7) 添加阶段和绘制支撑
- 8) 修改阶段标高
- 9) 指定荷载或设计方法组合
- 10)分析项目
- 11)执行边坡稳定性分析

程序顶部标签:

- 一般:这个标签包含项目一般信息,模型边界和所有模型选项。可以定义钻孔,墙 的节点数,地表和水位标高,添加或删除阶段以及支撑和荷载的修改和边界选项。
- 2) 分析: 定义分析类型(极限平衡法, 弹塑性地基梁或两者结合)。
- 3) 地震: 边界地震分析
- 4) 边坡: 这是一个额外模块, 用来分析边坡稳定性。
- 5) 稳定性+: 可以选择嵌固稳定性计算、地表沉降和克拉夫(Clough)方法计算抗隆起 稳定性。
- 6) 设计:可以选择结构设计规范以及墙和支撑承载力计算选项。
- 7) 结果:选择输出结果
- 8) 报告: 生成输出报告选项, 或查看计算过程文件。
- 9) 视图:修改视图选项,或生成模型俯视图。
- 10) 优化: 计算完成后, 优化墙和支撑选项。
- 11) 帮助:链接帮助和技术手册。

📓 🖡 •										DeepEX 2017 (17.0.0.23): New Project						
6e	-般	分析	地震	边坡	稳定性+	设计	结果	报告 视图	优化 帮助								۵
業 建模向导	項目信息	模型标志	模型尺寸	Soil types	Structural	1: Boring 编辑44 自定义:	1 × 孔 × 土层 ×	· ▲ 编辑第一道读 • ▲ Add 2nd Wall	地表设置选项	左 0.00 \$ 右 0.00 \$	左 -5.00 🛟 🛎 *	<mark>1</mark> 2 添加	Delete Stage etc	+ 12 绘制支撑	生 注制荷载	菜单	
向导	信息	模型	边界		属性	钻	孔	増	培训	地面高程	水位		阶段	支撑	荷载		
设计断面	村型视图	3D		_	Base model												
Design S	ections ie model		Mmax (kN	- Ri						模型视图	Base model						Concrete Code: EC-2005 EC-2005-CDN Tex Year Comp. Dran Dear Comp. Description: Comp. Description: Comp. Description: Comp. Description: Comp. Description: Comp. Description: Comp. Sec. Se
	设计断	·面				EI.0.				Drive	Resist					8.00	计算乐件
	三维框架	遗项							-dn	Кан+0.333 Крн+3	Кан-0.333 Крн-3			V .3m	<u> </u>		
<				,		р үт= 19.625 kNim: ¢ = 30 deg	3	-		Wall 1 Steel She	45			-			
	an speak that can I DXF	to nel sav?			导出DXF	Boring 1				PytiShee Cantileve	e, soor zeooon an 944,5 Me r. Free earth						
Co	K		Q, S81	-	宣有选项、	工具和检	宣按钮	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1									-
@ <i>•</i>	×	查模型			Stage 0 Stage: 0/0 >>	1: 20.01 2	-23.04	为"女」加工阶段 命令行						(n, cn,	168) 2.17	H:1V	
增篇 Chinese SI Units	语言 单位(张 : (s, os, 1	<mark>和单位选</mark> 渡, 位移, (3)	项 力)	•	计算过程 法)析记录 计算过程										4	已進设计新面 全部设计新面 计算 (Tress) 分析按钮

图 2.2 DEEPEX 2017 程序界面

2.3 工具栏

2.3.1 工具栏菜单

第一个标签包含以下内容:

● 启动按钮

图 2.3.1 主菜单按钮

丁具		描述				
		лих.				
		新建一个项目				
		打开已有项目				
		保存项目				
		项目另存为				
~~~						
-4		のなった作用し				
<b>B</b> W		ABIM 乂忤守入				
		最近打开过的文件列表				
4						
Ċ		退出程序				
设计断面列表下	方有常用的					
工具		描述				
⊴⊜⊳⊤		选择工具-移动对象				
3		删除选择的对象				
<b>X</b>		打断地表线,并插入一个点				
		在断面上单击, 定义开挖边界				
	在断面上单击,定义回填边界					
Οφ	显示土体属性					
Ĩ		显示尺寸				
Α		显示假设				
×y		显示点坐标				
Ax		显示坐标轴				

Snap	打开/关闭捕捉			
$\mathbf{Q}$	放大			
	缩小			
	水平方向和竖直方法缩放比例 1:1			
8	缩放至原始视图			
- AP	显示锚杆尺寸			
×	执行模型一致性检查			
设计断面列表以下,最近的工具列表是设计断面编辑工具,工具功能如下:				
一一日	<b>描述</b>			

工具	描述
E	重命名
V	生成当前设计断面新的视图
+	添加新的设计断面
-	删除设计断面
1	将选中设计断面上移一个位置
¥	将选中设计断面下移一个位置
+	添加新的设计断面(空-只包含阶段 0)

界面右下角有一个计算工具栏:

工具	描述
已选设计断面	计算视图中选择的设计断面
全部设计断面	计算所有断面

#### 2.3.2 墙列表,设计断面列表,项目树视图和 3D 模型

软件顶部标签菜单左下角是设计断面标签和树型视图标签。树型视图方便设计人员快速 找到项目数据及当前项目设置。下表中列出了详细菜单的详细功能:

图标	描述
Design Sections Mmax (kN Rmax (kN FSslope 0: Base Model	显示设计断面
♥ 0: Wall 1	当模型中添加了第二道墙时,选择某道墙应 用到当前设计断面
<ul> <li>● ⑤ 设计断面</li> <li>● ⑤ Mixed Sand Clay Profile</li> <li>● ● 1 stages</li> <li>● ● 1 Stages</li> <li>● ● 1 Walls</li> <li>● ● ● 1 Walls</li> <li>● ● 1 Walls<th><b>和左侧图片对应菜单:</b> 显示已经定义的设计断面 显示使用的墙体类型 支撑列表(右键添加或删除) 线荷载(右键添加或删除) 超载(右键添加或删除) 指定位移(右键添加或删除) 指定症移(右键添加或删除) 指定支座信息(右键添加或删除)</th></li></ul>	<b>和左侧图片对应菜单:</b> 显示已经定义的设计断面 显示使用的墙体类型 支撑列表(右键添加或删除) 线荷载(右键添加或删除) 超载(右键添加或删除) 指定位移(右键添加或删除) 指定症移(右键添加或删除) 指定支座信息(右键添加或删除)
E→(S) Soft clay Profile ⇒→ (M) 1: F →→ (M) 2: 01 →→ (M) 3: 02 →→ (M) 4: V1 →→ (M) 5: V →→ (M) 6: GT	己定义的土层(双击可以修改土层材料属性)
	已定义的钻孔(双击可以修改钻孔属性)
<ul> <li>□ ····································</li></ul>	结构材料(双击可以修改结构材料属性)
<ul> <li>●</li> <li>●</li></ul>	墙截面(双击可以修改墙体材料属性) 结构截面(双击可以修改结构截面形式,包 括基础和建筑物)
	其他三维荷载(面荷载,3D点荷载和车辆荷载)

为了使用 DEEPEX 三维模块,首先需要创建一个双墙的设计断面,包含荷载和所有分步施工阶段。接下来,使用三维向导创建三维模型。图 2.3.2 列出了三维模块中包含的选项。



### 2.4 一般菜单



■ **项目信息**:定义项目名称,文件编号和设计人员姓名等。

项目信息		
项目名称	FHWA Verification Example	
文件编号	1	
编制	Deep Excavation LLC	
附加说明 Deep Excavation	Project	

图 2.4.2 项目信息对话框

■ **项目标高**:通过输入墙顶部标高,改变模型标高。其中标高的适用对象可以在下表 中选择。

💁 Reset ALL X	/Z	23
_1. 设置标高_		
Top of wall	EL	
标高	4	m
V Design Se V Soil Laye All Boreh V Stage Ele V Wall Elev V Support B V Surcharge Footings	ection Coord. ers (Current) moles (Layers evations rations Eleavations Eleavations & Buildings	;)
-2. 修改应用的 <ul> <li>全部阶段</li> <li>本阶段</li> <li>从阶段</li> </ul>	阶段 0 至	: 0
	确认	取消

图 2.4.3 模型标高对话框

墙顶部作为更改标高的参考点。

设计断面坐标
土层标高(当前钻孔)
所有钻孔的所有土层标高
所有阶段标高
所有墙的标高
所有支撑的标高
所有荷载标高
基础和建筑物标高

■ **模型尺寸**:定义断面名称,模型边界,墙体平面内转角,基坑形状。

设计断面名称及一般数据	23
_1. 设计断面名称	
Mixed Sand Clay Profile	
3. 模型边界	
顶边界 14 m	
左边界 -25 m 右边界 25 m	
底边界 ─16 m	
5. 墙体平面内转角 平面内沿y-y 轴夹角 60 ° 该角度指墙沿水平y-y 轴的转角, 查看 影响, 比如将角度改为10°, 查看俯视图.	
6. 星坑形状 Box type (rectangular)	
长度 30 m	
确定即消	]

图 2.4.4 模型界限对话框

对话框包含下列选项:

- ▶ 断面名称。
- ▶ 模型边界,顶边界,底边界,左边界和右边界。输入的值是绝对坐标。
- ▶ X-Y 平面内墙体与 y'-y 轴转角(查看:视图>>俯视图)
- ▶ 基坑形状(长条形基坑,矩形基坑,圆形竖井)

■ **建模向导**:可以快速的创建一个项目。

▶ 设置单位:

设置单位	23
选择项目单位	
🔘 Use English Units (kips, ft,	inches
🧿 Use Metric Units (kN, m, cm)	
🔘 Use Consistent SI (kN, m, m)	
🔘 Use Metric Units (N, m, mm)	
🔘 Use Engineering Metric Units	(Tons, m
🔘 Use Engineering Metric Units	Okgf, m,
确定	取消

图 2.4.5 设置单位窗口

▶ 欢迎标签:选择分析类型。

		X
1. 欢迎 2. 尺寸 Soil layers 3. 墙的类都	型 5. 阶段 6. 超载 7. 规范	
		型.
1. 分析类型		
◎ 极限平衡(例性支撑)	○ 极限平衡分析+非线性分析(弹塑性)	◎ 非线性 (弹塑性地基梁)
Limit Equilibrium	Limit Equilibrium Non - Linear	Non - Linear
	Create 2 design sections for LEM and NL	
多道支撑时经典土压力		
FHWA (USA)	•	
Simplified span analysis with negative	moments •	
Walls are analyzed with the limit-equilibrium me	thod. Supports are fixed and each stage is independent Thus, wall deflections (a	nd likely wall bending moments) are not realistic for cases with multiple supports.
Optimize wall embedment (only for Limit	-Equilibrium and one wall)	
🗌 Optimize wall embedment for safety f	actors (Conventional Analysis Only)	
		下一步

图 2.4.6 设置向导

有三种类型可以选择:极限平衡法,极限平衡法+弹塑性地基梁法,弹塑性地基梁法。 如果只选择极限平衡法,程序可以优化墙的嵌固深度。并且可以定义土压力 FHWA 分布, 自定义梯形分布, Peck 1969 分布和 Adaptive 土压力(根据主动区或高度定义)。

下列列表选项可供选择:

- Blum's method (pins at supports, and at zero net load)
- > Tributary area method
- Simplified span analysis (FHWA approach)
- Simplified span analysis with negative moments
- California Trenching Manual 2011 (option negative moments)
- California Trenching Manual 2011 (20% negative moments)
- Hydrostatic water pressures (groundwater analysis)
- > One dimensional flow around wall (groundwater analysis options)
- > Two dimensional flownet analysis (groundwater analysis options)

只有一道墙并且采用了极限平衡法时,可以选择优化墙的嵌固深度,定义墙的嵌固安全 系数和墙嵌固深度搜索增量。2016 版本以后,可以计算两道不同墙的墙安全系数,一道墙 可以是悬臂墙或者有一道支撑的墙(自由土压力方法)和有多道撑的墙。而且,对于弹塑性 地基梁法提供了一个选项,可以选择是否包含土拱效应。

▶ 尺寸标签:定义基本模型尺寸。

			23
1. 欢迎 2.尺寸 Soil laye	ers 3. 墙的类型 5.	阶段 6. 超载 7. 规范	
B. 尺寸			Expand >>
最终开挖深度D	10 m	Tiebacks and tierods	^
墙的长度H	12 m		
工 <b>拉</b> 實度B	25 m		
持める部行す	4		
地下水标高	-16 m	Struts, rakers, or concrete slabs	^
		Frames and circular shafts	~
Support options Support angles From Horizontal 《 水平向词题	α 20 °		
Bond Zone I	Lf ⁸ m		
Free length options			
Canadian m=0.15H	•		
Tichesk 0	_	结构属性	
Ileback 0		☑ 估计锚杆属性 Pult= 0.40 γ	ch x s
☑ 为每层支撑创建一个新的	结构截面	☑ 锚杆施加预应力 6準性地基梁解). 0.18 γ	ch x s
		前一步	Next

图 2.4.7 向导-尺寸标签

#### 下表列出了可供快速开挖的模型:



	-
	双墙+内支撑
	单墙+斜撑
H B/2 I D I	单墙+斜撑和支座
	盖挖法+混凝土板
	箱型+围凛
	内撑+3D 框架
	圆形竖井(沿着圆形轮廓分布均布荷载模拟 半空间模型)

根据所选项目类型,在标签左侧可以定义结构截面,间距和支撑安装角等信息。可以定 义下列参数:

- ▶ 开挖最终深度
- ▶ 墙深度
- ▶ 开挖宽度
- ▶ 墙顶标高
- ▶ 地下水标高
- ▶ 第二道墙的深度(锚定墙)
- ▶ 初始地表标高(锚定墙)

- ▶ 拉杆深度(锚定墙)
- ▶ 支撑水平间距
- ▶ 支撑结构截面
- ▶ 倾角(锚杆或斜撑)
- ▶ 设置斜撑到基点选项(斜撑)
- ▶ 锚杆自由长度(自定义, Italian m=0.2H, Canadian m=0.15H)
- ▶ 估计锚杆属性选项(仅锚杆)
- ▶ 锚杆预应力选项(仅内撑和斜撑)
- ▶ 温度改变量(仅内撑和斜撑)
- ▶ 温度荷载修正系数(仅内撑和斜撑)

#### ▶ 土层标签:定义土层和钻孔

<b>월 DEEP 向导</b> 83
1. 欢迎 2.尺寸 [Svil layers] 3. 播的类型 5. 阶段 6. 超载 7. 规范
Please define your basic soil types. Soil types are used in borehole records (borings).
🗆 Define soils from text description
Image: Second
Please define an approximate soil layer stratigraphy (boring). A boring uses soil types and top of layer elevations.
つ
Z, Edit borings
前一步  Next

图 2.4.8 向导-土体和土层标签

主要包含两个选项:

1.编辑土层:单击该选项弹出土层属性对话框。详细参数见 3.4 章节。 2.编辑钻孔:单击该选项,弹出编辑钻孔对话框。详细描述见 3.5 章节。

▶ 墙类型标签:定义墙基本类型。



图 2.4.9 向导-土墙的类型标签

单击编辑按钮,弹出墙截面对话框。详细参数见3.8章节。

▶ 分步施工阶段标签:定义分布施工阶段。

主要包含三个选项:

▶ 自动标高:

程序将自动为每个阶段等间距布置支撑并确定开挖深度。有一个选项,选择是否包含没有开挖的初始阶段(推荐使用)。

弦磁 2. 尺寸         Soil 1. sever         3. 植的金属 1. 集成 可从本菜单 选择创建院工艺送项 前の屋坊打打艺           自动称寫         ● 标高列法         易数           ● 等原原         2. 支撑動量(県昇打控)(段后)           ● 等原原         2. 支撑動量(県昇打控)(段后)           ● 算用打控定瞭的段目:         3.5 m           * 没有开控定瞭的段目:         3.5 m           * 没有开控定的段目:         3.5 m           * 没有开控定的现在。         3.5 m           * 没有开控定的现在。         3.5 m           * 没有开控定的现在。         5.5 m           * 没有开控定的现在。         5.5 m           * 没有开控定的现在。         5.5 m           * 没有开控定的现在。         5.5 m           * 空気算机         0.5 m           ● 建設工業         ● 建設工業           考古市的段抗腐均为12 mo         0.5 m           ● 算成         ● 重成需用工業購買力           考慮支撑款流的动说。当选择土弹簧分析时使用 ( 發烈建议当使用土弹簧分析时)	EP 向导					
可从本菜单、选择的建施工步选项 新的基次开招       自动标案     「林嘉列法       「周辺     「林嘉列法」       「夏夏夏     「「「「「「「「」」」」」」」」」       「夏夏夏     「「「「」」」」」」」」」」」       「夏月开挖空隙的段(1: De)     3.5 *       「公月开挖空隙的段(1: Galage)」     3.5 *       「公月开挖空隙的段(1: Galage)」」     3.5 *       「小麦菜炒豆豆口」     3.5 *       「小麦菜炒豆豆口」     3.5 *       「小麦菜炒豆豆口」     「「「」」」」」       第一通支撑位豆口」     「「」」」」       第一通支撑位豆口」     「」」」       第一通支撑位豆口」     「」」」       第二人類公式     「」」」       第二人具 「」」     「」」」       第二人類公式     「」」」       第二人類公式     「」」       第二人類公式     「」」」       第二人類公式     「」」」       第二人類公式     「」」」       第二人類公式     「」」」       第二人類公式     「」」」       第二人類公式     「」」」       第二人類公式     「」」」   <	次迎 2.尺寸  Soil laye	rs 3. 墙的类型 5. 防	段 6. 超载 7. 规范			
自动标高 ● 作器列法 ● 易解 「可加 「可加 」 等词通 2 反指針質(晶質开控的段后) 解开控弦隙的段0(違论选择,以获得更真实的硬配の两估算) 第一道支撑位置加 3 。 造页部以下 每个阶段坑底均为h2 0.5 。 程底更支撑位置以下 (在安装最底层支撑之前) 考虑支撑款话的阶段、当选择土弹簧分析时使用、G氢烈建议当使用土弹簧分析时)		可从本菜单 新	.选择创建施工步选项 的基坑开挖			
2     欠撑数里(爆臂并控防投后)       以腎开挖菜原防投: pc     3.5       1.没有开挖的股风(違论选择,以获得更直实的摸型和费用估算)       第一道支撑位置口 3     • 造顶即以下       每个阶段抗腐均为2     0.5       ●     截底层支撑位置以下       考虑支撑数活的阶段,当选择土弹簧分析时使用,6毫烈建议当使用土弹簧分析时)	自动标高 间距	○ 标高列表		○ 悬臂		
場件 打弦張 度 が 段 1: pc 3.5 0 0 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0 1 2.5 0	等间距 2	5 撑数里 (悬臂开)	挖阶段后)			
<ul> <li>2 没有开挖的阶段(0)(建议选择,以获得更直实的搜型和费用估算)</li> <li>第一道支撑位置以 3 。 结顶部以下</li> <li>每个阶段抗腐均为12 0.5 。 最底层支撑位置以下 (在安装最底层支撑之前)</li> <li>考虑支撑款活的阶段,当选择士弹簧分析时使用,6毫烈建议当使用土弹簧分析时)</li> </ul>	(臂开挖深度阶段1: De		3.5 m			
<ul> <li>第一道支撑位置11 3 ● 造顶部以下</li> <li>每个阶段抗腐均为2 0.5 ● 最底层支撑位置以下 (在支装最底层支撑位置以下 (在支装最底层支撑之前)</li> <li>考虑支撑款活的阶段,当选择土弹簧分析时使用,《呈烈建议当使用土弹簧分析时)</li> </ul>	没有开挖的阶段作为阶段	80(建议选择,以获得更	[真实的模型和费用估算)			
每个阶段抗腐均为2 0.5 。 最底层支撑位置以下 (在安装最底层支撑款活的阶段,当选择土弹簧分析时使用。《显烈建议当使用土弹簧分析时)	第一道支撑位	置D1 3 m	墙顶部以下			
每个阶段抗原均为1/2 0.5 。 健康民支撑位置以下 (在支装载后的阶段,当选择土弹簧分析时使用。《强烈建议当使用土弹簧分析时)						
考虑支撑款活的阶段,当选择土弹簧分析时使用.《强烈建议当使用土弹簧分析时)	每个阶段抗底均	为h2 0.5 m	最底层支撑位置以下 (在安装最底层支撑之前)			
考虑支撑款活的阶段,当选择土弹簧分析时使用,《强烈建议当使用土弹簧分析时)						
	考虑支撑激活的阶段,当进	5择土弹簧分析时使用. @	虽烈建议当使用土弹簧分析时	Ð		

#### 图 2.4.10 向导-阶段自动标高标签

▶ 以表格形式定义标高:

手动添加支撑标高,最底层支撑和坑底的高差也可以定义。

같 DEEP 向导	
1. 欢迎 2. 尺寸 Soil layers 3. 墙的类型 5. 阶段 6. 超	<u>ガー7. 規范</u>
可从本菜单.选择创刻 新的基坑开	施工步选项 挖
<ul> <li>○ 自动标高</li> <li>◎ 标高列表</li> </ul>	
Tabulated Depths for Supports	
支撑深度 开挖深度 支撑标高	
▶ 1 2 2.5 -3	
*	
每个施工阶段的坑底位。	
置为h2 0.5 m 取底层支撑以下0	则朱压文择女装之削丿
☑ 考虑支撑激活的阶段,当选择土弹簧分析时使用. 《虽烈建议当	使用土弾簧分析时)
	前一步 Next

图 2.4.11 向导-阶段标高列表标签

▶ 悬臂:

选择该选项,生成无支撑开挖。

💡 DEEP 向导				
1. 欢迎 2.尺寸	Soil layers 3. 墙的类型 5. 阶段 6. 超	3载 7. 规范		
	可从本菜单.选择创题 新的基坑开	∎施工步选项 ∏挖		
○ 自动标高	◎ 标高列表	◎ 悬臂		
✓ 考虑支撑激沽日	3阶段,当选择土理黄分析时使用。《遥烈建议当	1使用土理黄分析时)		
			前一步	Next

图 2.4.12 向导-阶段悬臂墙标签

#### ▶ 超载标签: 定义作用在墙上的外部荷载,即超载。

金 DEEP 向导 <ol> <li>1. 欢迎   2. 尺寸   Soil layers   3. 適的类型   5. 阶段   6. 超戦   7. 規范</li> </ol>	X
基抗周边的施工设备或者堆积的材料会对墙引起超载,下面可以添加实际工程中一些典型的超载.	
<ul> <li>○ 二阶超载</li> <li>● 三角形超载</li> <li>15 kP a for 5 m</li> </ul>	
O Use a strip load	
◎ 无超蛾	
Surcharge modelling options (advanced)  Elasticity equations for LEM	
	前一步 Next

图 2.4.13 向导-超载标签

可以选择二阶超载,三角形超载,条形超载或者不包含超载。 采用极限平衡法时,可以定义超载模拟选项:

	弹性解
	两个方向扩散角
	一个方向扩散角
45-Φ/2	一个方向扩散角(使用土层摩擦角定义扩散 角)

Elastic to vertical stress $q = Ka \times \Delta \sigma_{v,el}$	竖向应力 x Ka (or Ko)的弹性解
(45+Φ/2 Φ.Χα-	CIRIA Special Pub 95-1993

#### ▶ 规范标签:定义使用结构规范和岩土规范。

🚰 DEEP 向导			
1. 欢迎 2. 尺寸   Soil layers   3. 墙的类型   5. 阶段   6	. 超载 7. 规范		
1. 结构规范			
◎ 保持当前结构规范设置	◯ Use US Allowable Stress Design for Steel (ACI for concrete)		
🔘 Use Eurocodes 2,3, 2007	○ Use USA LRFD Stress Design for Steel (ACI for concrete)		
🔿 Italian Codes (EUR.) 2008	🚫 CN Codes (China, Level 1)		
2. 岩土规范 @欧洲规范等)			
<ul> <li>不使用规范</li> </ul>			
○ 在单独的设计断面中分析所有规范 工况	范工况		
设计规范 EC7, 2007	<b>_</b>		
✓ Link Model in Design Sections to Base Design Se	stion		
L			
		前一步	0k

#### 图 2.4.14 向导-规范标签

#### ■ 土类:

■ **修改土层属性:**选项位于土层类别下拉菜单。可以为指定阶段改变结构材料和土层 材料。改变材料这个命令对于所有后续阶段都是有效的,除非在后续阶段又改变了材料 或者改变模型。使用这些选项时要非常小心。

在修改土层属性对话框中,列出了下列参数:

描述材料变化
选择改变材料的适用阶段
选择材料类型
选项修改的材料
弹性模量标准值

弾性煤重新伸
--------

■ **编辑土体数据**:添加、删除和修改土体。修改土层包括:更改土类,一般属性比如 重度,强度参数和渗透系数,弹塑性参数和锚杆粘结强度等。不同钻孔可以使用同一层 土。许多参数估计的工具帮助估计参数取值。详细介绍见 3.4 节。

🧌 土的美型		<u>୧</u> ×
土体类型	1. 名称及基本土体类型	
F	名称 『	颜色
01	IN IN RIT	
S1	相述 1111 0 上// # 副 伝教	
Clay	2. 工体突型11万	
Rock	Sand 🔻	显示试验数据(SP1, CPT Ftc)
	3. 粘土排水-不排水行为(详见理论手册)	
	○ 不排水 ● 排水	
	A. 一般 C. 弹塑性 D. 粘结强度 B. 高级	
	4.重度	
	γ 19.625 ktN/m3 > γ dry 18.84 ktN/r	n3 🎢 '= ^{9.625}
	5 路度参数和泊松比	
	Drained strength properties	
		•
	kPa / Ø 30	
	Peak - constant vol. (	for estimation)
	⊕ cv' Omitted	° >
	A	
	v 0.35	
添加		
	6. 渗透性	
复制	Kx 9.999999995 m/sec > Kz 9.999999995	m/sec >
nule	8. 静止十压力系数	
明护示		
*Ent	KoNC 0.5	= KoNC * (OCR) nOCR
т <u>а</u> уд		
Clone		
打开数据库	保存到数据库 确定	取消

图 2.4.15 编辑土体类型对话框

■ **钻孔(土层): 呈编辑记** 编辑项目中使用的钻孔信息。每一个钻孔都可以添加 不同土层。可以为每个钻孔定义土层标高,从土类里选择土层,定义 OCR 和 K0 值。 并且单击编辑按钮,可以修改选择土层的材料参数。钻孔的坐标参考钻孔的平面位置, 不影响分析结果。

訪別     1. 訪月-般信息-坐标       「お印 Boring 1     坐标 X       全称 Boring 1       坐标 X     20 m Y 0 m       火生标注動結乳在设计截面測图的位置。每一个设计截面使用一个钻孔(地层),每一个设计截面都可以使用不同的结乳。       SPT Data Option (Applies to Design Section)       SPT Record Bot assigned       CPT Record Option (Applies to Design Section)       CPT Record Dytion (Applies to Design Section)       CPT Record Dytion (Applies to Design Section)       CPT Record Bot assigned       ▲ Add edit CPT records       2. 土层枯孔-土层标高       「飯」「「香」」       「飯」」       ●       ●       ●       ●       ○       ▼       ○       ▼       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●        ●	土层	
Boring 1     生标 X     20     Y     0       史生标注参贴结判在设计断面积图的位置。每一个设计断面使用一个结乳(地层),每一个设计断面都可以使用不同的结孔。     SFT Data Option (Applies to Design Section)     SFT Record Mot assigned     Add edit SFT records       CFT Record Option (Applies to Design Section)     CFT Record Bot assigned     Add edit CFT records       C T Record Option (Applies to Besign Section)     CFT Record Bot assigned     Add edit CFT records       2. 土层估剂-土层标高     ⑤印环高 土体失型     OCR Ko     编辑       > 0     F     1     0.5     Edit       添加     ●     ●     ●     ●     ●       添加     ●     ●     ●     ●     ●	钻孔	1. 钻孔一般信息-坐标
坐标 x 20 m Y 0 m      relefitightAltaCQHt的TamAUBIN位置、每一个设计的面使用一个钻孔(地层),每一个设计的面称可     以使用不留的钻孔。      SFT Bats Option (Applies to Besign Section)     SFT Record Event assigned → Add edit SFT records      CFT Record Option (Applies to Design Section)     CFT Record Event assigned → Add edit CFT records      2. 工程钻孔-工程标高      顶部标高 土体类型 0CR Ko 编辑      o P → 1 0.5 Edit      within a section a	Boring 1	名称 Boring 1
※出标控制站孔在设计断面视图的位置、每一个设计断面使用一个钻孔(地层),每一个设计断面都可 以使用不能的站孔.       SPT Data Option (Applies to Design Section) SPT Record [Sot assigned		坐标 X -20 m Y 0 m
SPT Data Option (Applies to Design Section)         SPT Record Not assigned         CPT Record Option (Applies to Design Section)         CPT Record Not assigned         Add edit CPT records         2. 1层はAT.土层标高         原即体高         原即体高         (a)         STA         勝余)         Clone Boring         插入土层         酸涂土层		x坐标控制结孔在设计断面视图的位置,每一个设计断面使用一个钻孔(地层),每一个设计断面都可以使用不同的钻孔。
SFT Record Mot assigned     Add edit SFT records       CFT Record Option (Applies to Design Section)     CFT records       CFT Record Mot assigned     Add edit CFT records       2. 土层钻孔・土层标高     ①		SPT Data Option (Applies to Design Section)
CFT Record Option (Applies to Design Section)         CFT Record Kot assigned         2. 土层は孔-土层标高            面部标高         上体类型         OCR Ko 编辑         ·         ·         ·		SPT Record Not assigned
CFT Record Hot assigned     Add edit CFT records       2. 土民社孔-土民标高       原即标高 土体类型 OCR Ko 编辑       0 F マ 1 0.5 Edit       ※       添加       勝余)       Clone Boring       插入土层		CPT Record Option (Applies to Design Section)
2. 土屋社孔-土屋标高		CPT Record Not assigned Add edit CPT records
		2. 土层钻孔-土层标高
※ 0 F * 1 0.5 Edit       ※ 1 0.5 Edit		顶部标高 土体类型 OCR Ko 编辑
添加           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ●           ● <td></td> <td>▶ 0 F ▼ 1 0.5 Edit</td>		▶ 0 F ▼ 1 0.5 Edit
添加		
添加 删除) Clone Boring 括入土层 删除土层		
添加           ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●		
添加 删除) Clone Boring 挿入土层 ■解除土层		
●勝余)     Clone Boring     插入土层     ●勝余土层	添加	
WHF系) Clone Boring 抵入土层 WF除土层	anin é s	
Clone Boring 插入土层 開除土屋	(毛44年	
	Clone Boring	
	Clothe Dorring	抽八工后
		确定取消

图 2.4.16 编辑钻孔对话框

▶ CPT 记录:单击编辑钻孔右边向下箭头,可以使用 Geologismiki CPT 试验结果文件添加钻孔和土层。选择 CPT 记录导入,下列对话框出现:

▋ 编辑钻孔 ▼	Add 2nd Wall	the
CPT Import op	otions	
从Geologis	smiki CPT (CPeT-IT)导入	
提取CPT记	录到钻孔和土层	
静力触探记	录(CPT)表格	
www.geolo	ogismiki.gr	

图 2.4.17 CPT 记录可用选项

以下选项可以选择:

⊳

Geologismiki CPT 文件导入	选择 CPT 文件导入
提取 CPT 记录到钻孔和土层	添加 CPT 记录到模型中土层和钻孔数据
CPT 表格	打开 CPT 对话框
www.geologismiki.gr	打开 Geologismiki 网站

在 CPT 记录对话框中,可以将 CPT 试验钻孔和土体数据导入到程序的数据库。

Available CPT logs				
可用的ceri记录	CFT记录属性 Number of samples CPT 样本属性 General Data Processed Averages	Water depth m Test depth m	Cone factor Nkt Process CPT data and estima properties	ale
Import From Tab file Import Greg Drilling CFT Delete CFT log	Depth qc fs	u2 qt Rf Qt	Qtn Du Bq Fr	St
导出 Export to soils minus Export to soils at	s Standard Deviation Lower%	20    ☑ 指定参考高度导入地层 □ 舍入值	0 m Reset soils	0k Cancel

图 2.4.18 可用 CPT 记录对话框

■ 自定义土层:单击 ^{● 自定义土层、}自定义土层,可以使用 DeepEX'S 自定义土层模式以及使用非水平土层。这种模式时,不使用钻孔定义土层。而是,设计人员自己绘制 非水平土层。

▶ 打开自定义土层模式。



#### 图 2.4.19 自定义土层模式

- ▶ 根据钻孔重置土层,当前设计断面重置所有土层分界线为水平。
- ▶ 绘制土层分界线工具,在模型中绘制土层分界线(左到右),按 Enter 键完成。
  - **添加第二道墙**:单击该按钮,可以在已添加墙的右侧添加第二道墙。

▲编辑第一道墙▼
Add 2nd Wall
墙

图 2.4.20 添加第二道墙

会制第一道墙上的梁单元:选项位于编辑第一道墙右侧下拉菜单,选择该选项后,可以 绘制附加到现有墙上的梁,并修改它的属性。绘制墙上梁的方法是靠近墙单击一点,在 单击墙上梁的下一个点。



图 2.4.21 绘制左侧墙梁按钮

+]] 编辑墙体数据	
General Advanced features	<b>墙体截面(平面图)</b>
-1. 名称	
Wall element O	
-2. 墙体截面属性	
Use different section Wall 1 -	
3. 尺寸 現影影高. 5.64 m ★崖L 4.72 m 底部 -10.36 m	0.63
5. 墙体位置	
◎ 沿主墙轴向设置墙体单元	
◎ 在主墙左侧设置墙体单元.	
○ 在主墙右侧设置墙体单元. ○ Position wall element with offset from main wall. Xoffset 0.14 m	
Position wall element with offset from main wal: Xwall 0.14 m	
	确定 取消

图 2.4.22 编辑墙梁数据对话框

> 绘制第二道墙上的梁单元:选项位于编辑第二道墙右侧下拉菜单。功能和绘制第一道墙上的梁单元类似。详细描述见 3.7 章节。







图 2.4.24 地表设置选项

下张表中列出了可以设置的选项。

图标	描述
<u>ተ</u> ተ	重置整体地表高程
Ţ.	设置右侧地表高程
\$	设置左侧地表高程
***	地表点坐标数据表
	左侧创建台阶
	左侧创建斜坡
	右侧创建台阶
	右侧创建斜坡

水位:定义接近墙位置处的水位。单击地下水位图标 将弹出地下水对话框。单击水位图标右侧下拉菜单,显示以下选项:



图 2.4.25 水位标高设置

- 绘制自定义水位线工具。可以绘制非水平地下水。绘制方法:选择该选项后,在从模型 左侧单击一点移动到模型右侧单击一点(按 Enter 完成绘制)。删除自定义水位线,选 中自定义水位线,按 DELETE 键。
- ▶ 绘制 U 型线。在模型中绘制常水头线。这条线仅用于边坡稳定性分析。
- 用户自定义水位线工具。打开水压力自定义对话框。请注意,对于弹塑性地基梁法,水
   压力的两个连续零值仍然计入按 γ_w计算的不断增加的总竖向应力中。(详见理论手册)

单击水位按钮 📥 ,弹出地下水对话框。

중 地下水位 Stage: 5				
坑外水位 标高 5	n	Center Region Water ⑦ 一般标高 -15 m	第二道墙右边水位 标高 ⁻⁵ ···	
<ul> <li>地下水选项</li> <li>● 静水压力</li> <li>● 简化的流网</li> <li>● 全流网分析</li> </ul>		<ul> <li>保持在坑底</li> <li>降水到坑底以下</li> <li>Dewater on both sides</li> </ul>	指定第二道墙不同中心水位标高。	
◎ 自定义水压力	定义	- 隔水板作用(高级) 	编辑自定义水压力(第二道墙)	
● Balanced method 節段 ● Apply to all stages ● Apply to one stage Stage 5 ● Apply to stages From stage Stage 0 To stage Stage 5 ●				
水的密度				

图 2.4.26 地下水定义对话框

下表中列出了对话框中包含的选项。

定义坑外水位标高			
选项:静水压力			
选项:简化流网(1维渗流计算)			
选项: 全流网分析(有限差)			
选项:如果使用全流网分析,选项可以选择底边界常水头			
选项:使用自定义水压力			
选项:保持水位在坑底			
选项:降水到坑底以下			
选项:开挖区域水位使用一般标高			
选项: 在坑底创建隔水板			
定义水重度			
选项:指定接近第二道墙坑内右侧水位标高(已经创建第二道墙)			

■ **阶段**:添加、删除、插入或复制施工阶段。



图 2.4.27 分步施工阶段设置

图标	描述
+2	添加新的施工阶段
12	删除当前施工阶段
¹ ↓	在当前阶段后插入施工阶段
E)	复制选择的施工阶段
2	粘贴施工阶段

■ **支撑**:在下拉菜单中可以选择创建支撑或和相关支撑实体。

+ 绘制支	▲ 建 送制荷载 ・				
*	绘制锚杆				
+Þ	绘制水平支撑				
+3	绘制板支撑				
+	绘制斜撑				
-0-	绘制固定支撑				
+	绘制弹簧支撑				
+þ	绘制橫梁支撑				
Othe	er elements				
H.	绘制支撑上的腰梁				
+	绘制混凝土支座				
Tieback free length options					
X	Free length: Auto Canadian >				

图 2.4.28 绘制支撑列表

下拉菜单中选项主要有:

工具	描述
₩	添加锚杆 (在墙上单击第一点,在土层中单击第二点)
1°r +	添加支撑(在墙上单击第一点,在土层中或第二道墙上单击第二点)
+	添加斜撑(在墙上单击第一点,在土层中单击第二点)
-0-	添加固定支撑(在墙上单击添加固定支撑)
<b>+</b> )W(	添加弹簧支撑(在墙上单击添加弹簧支撑)
H	添加支撑上的腰梁(在支撑上点击添加腰梁)
+	添加混凝土支座(在斜撑上单击添加支座)
X	定义锚杆自由段长度。选项包括国际建筑规范推荐的最小长度建议值。
■ 荷载	<b>戏</b> : 下拉菜单中包含了添加超载的选项以及和超载相关的选项。



图 2.4.29 绘制荷载列表

www.cisec.cn

列表包含以下选项:

工具	描述
<b>#</b> †	添加地表条形超载(定义超载范围的起点和终点)
	添加地表线超载(在地表任意一点处单击)
<b>*</b> 4	在墙上添加条形超载(在墙上单击两点)
	在墙上添加指定位移(在墙上任意一点处单击)。
44	在墙上添加指定弯矩(在墙上任意一点处单击)。
+ <mark>3D</mark>	添加基础荷载(3D)(在基础荷载的位置处单击一点)
+	创建建筑物(在建筑物所在位置处单击一点)
+30	添加 3D 面荷载(程序自动显示俯视图,手动添加 3D 荷载)
	管理弹性荷载选项
	编辑荷载组合。手动选择荷载是有利还是不利。
	指定荷载组合。为具体设计断面指定荷载组合

➢ 3D 建筑物:点击 + 该选项后,弹出建筑物向导窗口。详细选项描述见 4.7 节描述。

🏠 建筑物向导	an all a manhad	×
Superstructure	1. 基本 2. 楼层 3. 基础 4. 柱 5. 墙 6. 高级	激活
Xwidth	1. 名称	阶段
Ywidth	Bldg. 0 🔽 显示名称	
Beams PEE	Building type Concrete frame building 🔹	
	2. 坐标和尺寸	
Grade	右側 Xo -13.01 m Grade Elevati0 m	
	Start Yo (0 m 😐 O °	
	X方向宽度 10 m X方向宽度 15 m	
	- 3. 楼层数里	
	上部结构层数nrs 3 建筑物高度H 9 m	
Z (Xo, Yo)	地下室层数nFb 1 地下室埋深Hb 3 m	
† _≠ γ Basement	4. 柱的数単 x 亡 亡 ± 60 # 日	
Continuous exterior		
wartz	¥万回柱的数里 5	
	Damage Assesment Not performed	

图 2.4.30 建筑物向导

▶ 添加基础荷载:点击该选项后,弹出基础荷载窗口。详细选项描述见 4.6 节描述。

📲 基础选项 (三维荷载)					
一般高级					
	基础名称	New Footing O			
X -12.62	m T 0.	5 m	P		
Z O	m Bx 2	m	x $y$ $(x,y,z)$		
Ϋ́O	m By 2	m	By Z		
	L 3	m	Т		
□ 位于地表 Bx Dywz					
P O	kN		Wall		
Θ 0	逆时针				
<ul> <li>「」点荷载(计算时间较短)</li> <li>「」将荷载按照支撑间距S进行平均(计算时间较长)</li> </ul>					
激活/冻结					
在本阶段激活	(全部设计	◎ 全部阶段	◎ 本阶段		
└└── 断面)		◎ 从阶段	0 至5		
			确认取注	ă	

图 2.4.31 基础选项对话框

**腰梁:**点击该选项后,在支撑上添加腰梁。腰梁看作是结构构件,在弹塑性地基梁分析 中不考虑它们的刚度。在腰梁对话框中可以定义其类型,以及荷载组合形式。详细选项 描述见 3.14 节描述。

Wales 新有阶段的结果	×
名称:       ₩ale beam 0         X       12.5 m       Z       -6.26 m         截面       编辑         选择断面       H-Waler       •         Use Hydraulic Waler Section       竖向间距       •         ⑤ 支撑间距       ·       ·         110000       ·       ·         ● 自定义值       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·         ·       ·       ·       ·         ·       ·       ·       ·         ·       ·       ·       ·         ·       ·       ·       ·         ·       ·       ·       ·         ·       ·       ·       ·         ·       ·       ·       ·         ·       ·       ·       ·         ·       ·       ·       ·         ·       ·       ·       ·         ·       ·       ·       ·         ·       ·       ·       · <t< th=""><th>荷载类型 ● 点荷载 ④ 均布荷载 选择荷载类型 Uniform Type 0 W N W N W N W N M W Uniform Type 0 W N M W N M W N M W N M M W N M M M M M M M M M M M M M</th></t<>	荷载类型 ● 点荷载 ④ 均布荷载 选择荷载类型 Uniform Type 0 W N W N W N W N M W Uniform Type 0 W N M W N M W N M W N M M W N M M M M M M M M M M M M M
2	确定 取消

#### 图 2.4.32 腰梁对话框

荷载组合:单击该选项后,弹出荷载组合对话框。在该对话框内可以创建无限制的荷载 组合。每一种荷载组合可以单独定义荷载(条形荷载,线荷载,基础荷载,建筑物荷载 和其他 3D 荷载)是有利的,不利的,自动的和忽略的。

荷载组合	
荷载组合组合名称	局部荷载 基础-建筑物 其他三维荷载
T T	(病何载) (方裁欠約 - 方引) (方裁行为)
添加组合	
刪除组合	
复制组合	
粘贴组合	
全部取消	
	何報名称 - 案51 何報行刀
	确认 取消

#### 图 2.4.33 荷载组合对话框-局部荷载

荷载组合					
荷载组合 组合名称	局部荷载 基础	基础-建筑物 其他三	准荷载		
添加组合       删除组合       夏制组合		荷载名称 - 索引	荷载行为		
全部取消	·建筑物	荷载名称 - 索引	荷载行为		
				确认	取消

图 2.4.34 荷载组合对话框-基础-建筑物
荷载组合	
荷载组合 组合名称	局部荷载 基础-建筑物 其他三维荷载 三 三维点荷载
添加组合	荷载名称 - 索引 荷载行为
删除组合	
复制组合	
粘贴组合	
全部取消	
	荷载名称 - 索引 荷载行为
	L

图 2.4.35 荷载组合对话框-其他三维荷载



■ 结构截面:一般标签的下拉菜单中选择 sections · 该选项,可以编辑模型中使用的所 有结构截面属性。



▶ 编辑墙截面:单击 sections 该选项后,弹出编辑墙体属性对话框。可以选择墙类型,尺寸,截面形式,编辑钢筋混凝土墙钢筋选项。详细内容详见 3.7 节。

3. 编辑墙体屋性	8
墙截面 A. 墙的类型 C. 钢板桩 F. 异示	
¥all 1 1.类型	2. 名称
Steel sheet pile wall	Wall 1
Exp and >>	3. 一般截面款据
<b>排低加挡板</b>	
板桩墙 >	$\int \sqrt{1} \lambda^{*}$
咬合桩 🗸	h
搭接症 マ	
地下连续墙 >	板桩
型钢混凝土墙 >	AZ 26 * ALL MANIFACTIRERS * ALL COINTREES *
白定义 🗸	
组合板桩墙 >	4. 尺寸 5. 结构材料
Bay sheet piles	宽度d 0.427 m 粉探 アリー
box sater pitts	本平詞語S 0.305 m
	?
	被动土压力计算宽度(开挖面以下) 0.305 n ≥
	主动士圧力计算密度(再始而以下) 0.305 n
	水压力计算宽度(开挖面以下) ^{0.305} n >
	开拉面以下被勒士压力计算宽度和主助士压力计算宽度用子操以开挖面以下作用在墙单元上
	0-27 (*ST#7
粘肌	
复制	
mire .	
001875	
添加	
☑ 自动更新造的尺寸	🔒 打开数据库 🔒 保存到数据库 确定 取消
☑ 自动更新造的尺寸	Ⅰ 打开款据库 保存到数据库 确定 取消

图 2.4.36 编辑墙体属性对话框

2 T T T
177
1 + 1
Edit anchor

▶ 编辑锚杆截面:单击 sections 选项后,编辑杆体结构属性和岩土特性,或者从程序数据 库中选择截面形式。详细内容详见 3.8 节。

种他面 ection=0 ection=1 Strands	A. 一般 B. 岩土 C. 高 1. 名称 Section=0	段
	2. 钢缆线选项 (自由段) <b>钢筋材</b>	H Strands 270 ksi v fy 1862.1 v MPa g 200100 MPa
	类型	选择直径或者钢筋数量
	● 钢绞线或自定义钢	<b>铜纹线直径</b> 334 • cm Effect. A 0.76748
	◎ 实心钢筋	Standard strands 教堂 7
	◎ 自定义面积	钢丝直径Di U cn
	◎ 微型钢管桩	
从数据库打开	◎ 微型型钢桩	A 7.49 cm2
添加截面	- 3. 注浆选项(锚固段) 混凝土材料 Fe 4	ksi V Dsfil = a x Dperf Dfix 15.001 cm
删除截面		

图 2.4.37 编辑锚杆截面对话框



编辑板截面:单击 sections 选项后,编辑模型中使用的板截面结构和钢筋属性。详细内容 详见 3.10。

⊨ 板截面		
板截面	A 截面單性 B. 高级 C. 截面包络线	٦
Slab H=2Uen Slab H=3Den Slab H=4Oen	1. 名称 Slab H=20cm	
	3. 结构材料 <b>濃葱土 Fe 3ksi                                   </b>	
	4. 截面尺寸 D 20 cn A 2000 cn2 Ixx 66657.8 cn4 荷気 5.0000000 kH/a	
	B 100 m 重新计算風性	
	5. 杨治知(前時時) 初時時時前 N 3 Bars # 45 → = AsTop 0.52 on2 3 on 底部形務5	
	N 6 Bars # #6 v = AsBot 17.03 cm2 3 cn	
	钢筋使用米制单位D10指10mm,美国用 # 未表示钢筋型号	
添加截面	6. 抗剪钢筋	
删除截面	Bars# = Ax 0 cn2 sX0 on sY0 on	
	确定 取消	

图 2.4.38 编辑板截面对话框



▶ 内支撑截面	×
内支撑截面	A. 类型-尺寸 B. 高级
PM600X19 PP24v0_500	1. 名称
112480.000	PM600X19
	2. 截面类型
	◎ ◎ ◎ 圆管截面 PM600X19 · · · · · · · · · · · · · · · · · · ·
	空心截面         双构件选项           ④ 单构件
	(羽) 450 · ⑦ 双物件
	<ul> <li>手动扁鏡内支撑属性</li> </ul>
	3. 截面尺寸 - 力学属性
	B 60 cm A 346.77 cm2 fy 344.8 MPa E 200100 MPa rx 20.5486 cm
	tP 1.9 cm ry 20.549 cm
删除截面	Ixx 146488.5 cm4 Iyy 146488.5 cm4 J 4687660.7 cm4 W 2.67 kW/m
添加截面	Sxx 4883.3 cm3 Syyy 4883.3 cm3 Zxx 6415.5 cm3 Zyy 6415.5 cm3
▶ 打开数据库	→ 保存到数据库

图 2.4.39 编辑内支撑截面对话框

▶ 编辑机械和液压支撑截面: 单击 还选项后,编辑模型中使用的机械和液压支撑截面结构属性。详细内容详见 3.9.1。

液压和机械支撑	X
截面	A. 类型-尺寸 B. 强度 C. 活络头 D. 连接板 E. Standard Lengths
HYD. STRUT	1. 名称和材料
	HYD. STRUT 生产商 N/A
	2. 截面类型
	● ② B形截面 PP60.2x1.5 ▼ 应用截面属 Metric pipes write PM912X19 颜色
	♥ 十斤顺
	nyaraulic v piston hold and h
	LCON L Hydraulic Unit Main strut (brace section determined from model)
	Start Transition structural strut elements End
	Connector can be added at these points Connector
	<ul> <li>手动编辑水平支撑属性</li> <li>支撑模型截面不屈服(非线性分析)</li> </ul>
	3. 截面尺寸-力学属性
	D 60.201 cm A 276.62 cm2 fy 235.2 MPa E 206000. MPa rx 20.7602 cm
	tP 1.501 cm ry 20.759 cm
删除截面	Ixx 119221. cm4 Iyy 119221. cm4 J 238438. cm4 W 2.13 kW/m
添加截面	Sxx 3960.8 cm3 Syy 3960.8 cm3 Zxx 5170.1 cm3 Zyy 5170.1 cm3
🔒 数据库	→ 数据库

图 2.4.40 编辑液压和机械支撑截面对话框

编辑螺旋锚杆截面:单击, Helical anchor Bections
选项后,编辑模型中使用的螺旋锚杆截面结构属性。
详细内容详见 3.8。

螺旋锚杆截面		×
螺旋锚杆截面	A.一般 B. 抗拔承载力选项 C. 高级	
Shaft 2-3/8 x 12 inch helix Shaft 2-7/8 x 12 inch helix	1. 名称	
Shaft 3-1/2 x 12 inch helix Shaft 4-1/2 x 12 inch helix	Bhart 2-3/6 x 12 inch helix	制造商 KAM JAUK
MH313-Galvanized MH313R-Galvanized	2. 轴管尺寸及属性	MJJI www.ramjack.com
MH325-Galvanized MH325R-Galvanized	f 270 - MPa	f 270 - MPa E 551.7 ksi
MH425-Galvanized MH425R-Galvanized	直径 6.032 cm	Ixx 41.6 cm4 描言切拉承執刀
MH431-Galvanized MH431R-Galvanized	厚度 0.483 cm	Sxx 11.5 cm3 Telastic 5.6 kN-m
MH625-Galvanized MH625R-Galvanized	轴管面积 3.312 cm ²	Zxx 14.7 cm3 Tplastic 6.06 kN-m
MH637-Galvanized MH637R-Galvanized	□ 轴管外部注浆	J 66.6 cm4 轴管抗拉承载力
MH646R-Galvanized MH646R-Galvanized		rx 1.918 cm Qyield 348.168 kM
		Qultimate 464.224 kN
	3. 螺旋板尺寸与属性	
	。 健议值 1 to	(基 6) 1 端部偏置 0.152 m
		□ 不同尺寸的板
添加截面	螺旋板直径 30.48 cm ^{螺旋}	遊牧田祝 0.070142 m ² 2 Qhelix Ah かわせれたいが知道し
	螺旋板间距 0.914 m 螺旋	症板倾斜 7.62 cm 单根螺旋锚杆
	螺旋板厚度 0.952 cm	387.15 kN
MAGNUM		
□ 7 ₽ 通研和其沙洪市	IC	
□. 5年11月25年末戊二八 Ignore capacities for spring	methods (Spring WILL NOT FAIL).	确定 取消
Equivalent to WIRE command.		

图 2.4.41 编辑螺旋锚杆截面对话框

▷ 腰梁截面: 单击

按钮,编辑模型中使用的腰梁截面结构属性。详细内容详见 3.14。

腰梁截面		×
腰梁	名称 H-Waler	腰梁截面图
H-Waler 2Channels Concrete80cmx	1. 类型 ● ► I型載面 ¥12X106 ▼	
	◎ 🔝 混凝土	
	· 钢梁材料和选项 材料 ▲50    fy 50    MP a	0
	■根据支撑类型自动旋转(例如锚杆) 转角 β 0 。 (Member Weak axis from verti	$\langle \rangle$
	■多根梁	
	□ 手动修改钢梁截面属性 「 1822」	
	截面属性	
	D 32.799 cm A 201.3 cm2 t 1.549 cm 是否为槽钢	
	$1 \times x = 38834, 4$ cm ² 1yy 12528, 6 cm ² cw 2873333 cm ² d x = -x T Sxx 2376, 1 cm ³ Syy 807, 9 cm ³ rT 8, 539 cm d x = -x T	Ŭ.
添加截面	rx 13.89 cm ry 7.899 cm W 1.55 kW/m	
刪除截面	Zxx 2687.5 cm3 Zyy 1230.7 cm3 J 380.02 cm4 里翔叶具 厘件	
		确定取消

图 2.4.42 编辑腰梁截面对话框

<b>横梁支撑截面</b> :单词	<b>》</b> 腰梁支撑按钮,	编辑模型中使用的横梁截面结构属性。	详
<b>横梁支撑截面</b> :单词	<b>P</b> 腰梁支撑按钮,	编辑模型中使用的横梁截面结构属性。	

细内容详见 3.14。

		~
横梁支撑截面 (圆型和	D箱型)	×
橫梁支撑截面	名称 Wale support	图示
Wale support	1. — #	Reaction
	●         箱形横梁支撑         横梁截面	Ends
	○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○     ○<	L Span
	3. 横梁弯曲选项 <b>漆弯曲类型</b> Simple span (w L ² 2/ ▼ <b>无支撑长度</b> 1 m	Simple span solution kVal= 384 E lxx /(5 L^4) Mspan = Fx L^2 / 8
	4. Elasticity and eccentricity options 4.1 刚度调整	<u>Fixed end waler beam</u> kVal= 384 E lxx /(L^4) Mspan= Fx L^2 / 24
添加截面	钢 75 % 最小偏心距 10 cm	Mends= Fx L^2 / 12
刪除截面		
选择荷载类型		确定 取消

图 2.4.43 编辑腰梁支撑截面对话框

#### ▶ 结构材料:编辑结构材料属性。

包含以下选项:

混凝土
钢筋
钢材
木材
用户自定义

编辑钢材属性:编辑结构构件钢材属性。单击"导入标准钢材"也可以从数据库中导入。

编辑结构材料	编辑结构材料(墙和支撑) X											
钢材 混泼	誕土   钢	筋!	用户材料 木	户材料 木材								
A36 A50		名称	A36			导入标准钢材						
	屈服	强度Fy	7 248.3 MPa		1-1							
	极限强度Fu		400 MPa									
	弹性模望		200100	MPa		材料						
	密度。		77.0046	kN/m3		<b></b>						
	P	oisson	0.3		and the second							
		Thi ck	cm Fy MPa	Fu MPa	Fall MPa	← 导入并代替所选材料						
	1 999.89		9 248.3	400	N/A							
	*					导入开作为新材料添加						
新建		删除				确定取消						

图 2.4.44 编辑结构材料对话框-刚才标签

定义的材料参数如下:

钢材名称
屈服强度 Fy
极限强度 Fu
弹性模量 E
重度 g
选用的钢材型号
导入并替换选择的材料
导入并作为新材料添加

**编辑混凝土材料:**编辑混凝土材料属性。单击"导入标准混凝土材料"也可以从数据库中导入。

编辑结构材料	(墙和支撑)				×
钢材 混凝	赴 钢筋	用户材料	木材		
Fe 3ksi Fe 4ksi	名称	Fc 3ksi			- 导入标准混凝土材料
Fc 5ksi Fc 6ksi	抗压强度Pc'	20.7	MPa		None 🔻
	弹性模量E	21541.8	MP a		材料
	密度。	23. 5728	kN/m3		[C8/10 ▼]
	抗拉强度Pt	10	(% Fc')	and the state	
	Poisson	0.2			导入并代替所选材料
				A STATE	
					导入并作为新材料添加
新建	删除				确定取消

#### 图 2.4.45 编辑结构材料对话框-混凝土标签

定义的材料参数如下:

混凝土材料名称
混凝土轴心抗压强度 Fc
抗拉强度 Ft(抗压强度百分比)
弹性模型 E
重度g
标准混凝土材料参考规范
选用的混凝土规格
导入并代替所选材料
导入并作为新材料添加

**编辑钢筋材料**:编辑钢筋材料属性。单击"导入标准钢筋材料"也可以从数据库中导入。钢筋适用于锚杆和钢筋混凝土截面

编辑结构材料	(墙和支撑)			x
钢材 混泼	程 钢筋 用户A	树料 木材		
Grade 60 Grade 75	名称	Grade 60		- 导入标准钢筋材料 参考标准
Grade 80 Grade 150	强度Fy	413.8	MPa	[None -
Strands 270 S410	弹性模量B	200100	MPa	材料
B450C	用于钢筋混凝土构	件		S410 •
			F锚杆	导入并代替所选材料 导入并作为新材料添加
新建	删除			确定取消

图 2.4.46 编辑结构材料对话框-钢筋标签

定义的材料参数如下:

钢筋名称
屈服强度 Fy
弹性模量 E
标准钢筋材料参考规范
选用的钢筋型号
导入并代替所选材料
导入并作为新材料添加

用户自定义材料:通过定义弹性模量,创建自定义材料。该材料用于自定义墙体截面。

编辑结构材料(	墙和支撑)	×
钢材 混激	土 钢筋 用户材料 木材	
Mat_default	名称 Mat_default	
	弹性模量E 29961.9 MPa	
	注意:当不计算结构墙承载能力时, 用户材料可用于墙体截面, 在墙体截面对话框中选择自定义墙体类型, 使用上述材料.	
新建	冊除	确定取消

图 2.4.47 编辑结构材料对话框-用户材料标签

编辑木材:编辑木材材料属性。木材用于排桩挡板。

编辑结构材料(墙和支	5撑)				×				
钢材 混凝土 钅	R筋 用户材料 木材								
Construction Tim Regular grade	名称	Construction	Timber						
	极限抗弯强度Fbu	11	MPa						
	Ultimate Compressive Strength Fcu	8.3	MPa						
	极限抗拉强度Ftu	9.7	MPa		Set default timber				
	极限抗剪强度Fvu	5.5	MPa						
	密度ε	7.8576	kN/m3						
	弹性模望	6900	MPa						
新建	新建 删除 确定 取消								

图 2.4.48 编辑结构材料对话框-木材标签

定义的材料参数如下:

木材名称
极限抗弯强度 Fbu
极限抗拉强度 Ftu
极限抗剪强度 Fvu
弹性模量 E
重度 g

# 2.5 地震菜单

	8	一彤	ž	分析	地震	边	坡 稳定性	E+ 设计	结果	报告	视图	优化	帮助
□考虑地震荷载						a.l	$\alpha_{\rm x}$			算	cn a	<u> </u>	
ax	0.000	) ,	g	M	- <del>M</del> ode for Tr	wo	いた 全地震洗项	-,4)C Method:	Semirigid	l multiplier	B 0.75	Water Re	haviour
az	0.000	) ;	g	Wall	s: Autom	atic *	THUNKER	Semirigid -				Imperv	ious *
加速度						分析	彷法	1	极限平衡地	Ę	非线性	地震	

图 2.5.1 地震菜单标签

在这个菜单中,我们可以选择模型分析中包括地震选项和地震荷载。选项如下:

■ 一般-加速度: 定义两个方向(水平 ax 和竖向 az)地震加速度。

☑ 考虑地震荷载								
ax	0.000	÷	g					
az	0.000	÷	g					

图 2.5.2 地震加速度

■ 方法:选择地震方法。可以从半刚性下拉列表中选择或者选择全地震选项



,加载地震效应对话框。

地震效应 for Both Walls	×
1. 设计加速度	4. 地震推力选项
☑ 在本阶段考虑地震效应	地震压力作为外部压力添加 ② 半网性 (aPD= aDasign x B x Sx total) B= 0.75
AxDesign g AxDesign=U g	● 中州正(山梁 = mesign x b x by_(otal) = 0.15 ○ Mononobe-Okabe (无粉性土, a = Adesign)
2. 基限加速度和场地效应 2. a 建锭规范洗面	
」 建筑规范 None ▼	O User defined with many points
上的类型 None ▼	自动地震计算程序 (使用 R=1 参见理论手册)
2.b 基底加速度和场地效应 基底加速度 AxBase= 0 ε 场地土响应系数 1 > Ss= 1 > 地形场地响应 1 >	○ Wood手动程序(经典的用户自定义方法) Wood自动程序(Auto for nonlinear method from Wood adjusted for wall deformations, Rect. Wood for Classic)
3. 国本性能及应杀剱& 3.基本墙体性能 ❷柔性	
■ -3.b. 柔性遺性能 - R 的计算 ◎ R= 白空ツ	- <u>vá</u> tatul
R according to Building C R according to Liso Whitm:	5. ※1251年 〇 诱水
3.c.R定义方法选项 3.c.1:R 值 (结构响应)	□ Ignore free water hydrodynamic pressures □ 使用地下水动力效应的实际水压力
R= 1	(0 到 1)
	6. 高度选项
	◎ 推力算到坑底
	7. 墙体惯性选项 同 考虑墙体惯性 (对于非重力式挡土墙)
	8. 一般设置 ☑ 将设置应用于全部阶段 (地震除外)
重新	计算设计加速度 确定 取消

图 2.5.3 地震效应对话框

下表中列举了地震效应可用选项:

选择当前阶段考虑地震效应
水平设计加速度 Axdesign
竖向设计加速度 Azdesign
选项: 使用建筑规范
定义建筑规范和土类(如果选择了使用建筑规范)
定义水平基础加速度 Axbase
定义场地土层响应系数 Ss
定义场地地形响应 St
定义重要性系数I
选项:使用刚性墙(wood方法)
选项: 使用柔性墙
选项:使用用户定义相应系数 R (如果已经选中柔性墙)
选项:根据建筑规范定义响应系数R(如果已经选中柔性墙)

## 2.6 分析菜单



图 2.6.1 分析菜单标签

在这个菜单可以编辑基本分析设置。

分析:选择分析方法。可以选择:

- ▶ 传统方法(极限平衡法)
- ▶ 非线性分析 (弹塑性地基梁法)
- ▶ 极限平衡法与非线性分析的组合
- ▶ 有限元分析
- ▶ 极限平衡法与有限元分析的组合

除此之外,我们可以定义墙划分的网格节点间距。推荐至少生成100个节点。



图 2.6.2 分析选项

关于非线性求解器:

弹塑性求解器是一个单独的可执行文件,通过一个文本接口文件与 DeepEX 进行交 互。分析方法通过定义主动和被动土弹簧,以及结构构件的弹性单元进行求解。该分析方法 由 Nova 于 1987 年首先提出,由意大利 CeAS 首次写入 Paratie 程序。这个最初的弹塑性 求解器概念已经得到扩展,包含了诸多新功能。因为分析是基于 Winkler 模型,弹塑性分析 无法捕捉到基坑开挖时坑底的变形。

■ **设计方法:**选择标准的设计荷载工况。可以选择设计标准的具体荷载工况,或者选 择设计规范所有荷载工况和设计方法。3.2 节详细描述了这些选项。

à	
	没有
	选择规范标准
0	EUR. 2007 - DA1/1
0	EUR. 2007 - DA1/2
	DM08 ITA: APP1-A
	DM08 ITA: APP1-B
	DM08 ITA: EQK
	DM08 ITA: EQK-STR
	自定义方法
	当前规范设置

图 2.6.3 单一荷载工况

1	3 <b>^</b> -	+	Æ	KaKp	^{5₀0} 第一道墙
0	生成E	urocode	國 (EURO)	7)	
	生成口	M08案例	(意大利)		
	生成E	urocode [	DA1案例(身	[国标准]	
	生成口	N-1054篇	國 (2005復	]国)	
	生成X	(P94案例(法	法国-土钉墙)		
	EC7算	劉(希腊)	)		
	生成A	ASHTO LE	RFD 5th荷载	组合 ( 美国	)
		DOT AASH	ITO (2012)		
	CALT	RANS LRD	F 2012 (Am	nend. V6)	
	CALT	RANS LRFI	D 2012 (v6)	- M-V-R A	mplified
*?	Chine	se load co	ombination	s - Level 1	(FS= 1.375)
*	Chine	se load co	ombination	s - Level 2	(FS= 1.25)
**	Chine	se load co	ombination	s - Level 3	(FS= 1.08)
		图	2.6.4 多个荷	<b> 载</b> 工况	

■ **地下水行为**:定义粘土行为和每个阶段地下水分析类型。



不排水分析时,程序使用有效强度指标(极限平衡法和整体稳定性分析中使用 C').默认的行为是在土层对话框中定义的。

地下水行为菜单右侧是地下水压力如何计算选项。图 2.6.6 显示了下拉菜单中可以选择的选项。单击下拉菜单上面图标,弹出地下水对话框。在地下水对话框中可以选择水压力计 算方法以及方法应用的阶段。



图 2.6.6 地下水分析选项

— 幸 地下水位 Stage: 0	8 23
坑外水位	坑内水位
标高 <mark>-5 m</mark>	◎ 一般标高 -5 m
地下水选项	◎ 保持在坑底
<ul> <li>○ 静水压力</li> <li>○ 简化的流网</li> </ul>	◎ 降水到坑底以下 5
<ul> <li>○ 全流网分析</li> </ul>	Dewater on both sides
	隔水板作用(高级)
定义	🔲 在坑底创建隔水板(参见理论手册).
Balanced method	
阶段	
🚫 Apply to all stages	
Apply to one stage	age 0 🔹
○ Apply to stages	From stage Stage 0 💌
	To stage Stage 0 💌
水的密度	The second secon
<b>g</b> w ¹⁰ kN/n	n3 第二章 明定 职注自

图 2.6.7 地下水对话框

静水压力	水压力按照静水压力计算,即 $\gamma_{w}$ *h		
简化渗流	墙侧水压力按照 1D 渗流分析计算		
平衡	坑底以上水压力按照静水压力计算, 坑底以下按照简化渗流计算		
流网分析	水压力按照 2D 有限差分流网分析。不考虑墙侧地下水位的下降。		
百字以水正力	请注意在非线性分析中,水压力零点只需在任意一侧的水位线开始。实际		
日走又小压刀	上,不用在上述水位处定义压力零点。		
封房工坊	这是一个高级选项。使用该选项可以对基坑进行封底,并且定义一个位于		
到成开拓	坑底以上的坑内水位线。此时,要确保基坑内竖向有效应力为正值。		
庙田海水正力	当使用荷载组合(或设计方法)时,需要采用净水压力方法。某些情况下,		
使用得不压力	如中国规范,这个选项不需要选择。此时,主动侧和被动侧水压力会通过		
刀石	不同的荷载和抗力系数来调整。		

■ **推力选项:** 推理选项可以选择计算主动侧和被动侧土压力系数。



图 2.6.8 显示了可供选择的推力模式。单击下拉列表上面的图标 options, 弹出 Ka 和 Kp 对话框,见图 2.6.9。在这个对话框中,我们可以选择计算土压力系数的方法。大多数情况下,自动模式会给出最佳方法。

A Th opt	aKp JTO Irust ions ▼	5 <b>00 第二道墙</b> ≁	FHWA Drive Pressures: FHWA *	Resist Pressures: Passive *	Supports: Beam * Cantilever: Free-earth * Beam: California Trenching and Shoring Manual 2011 *	高级选项 NL Analysis ・ Arching・	
KaKp AUTO	Automatic mode (Re In this mode, DeepEX	commended) ( automatically se	elects the Ka and	Kp equations de	pending on wall friction and seismic conditions. Reco	mmended mode for mo	st uses.
KaKo	User mode			( K)	We at some share. We and We are calculated from the	I filmine I I-	the sure ll

In this mode you have to tell DeepEX what equations to use for Ka and Kp at every stage. Ka and Kp are calculated from the soil friction angle and the wall friction angle. Use this mode if you want to change how wall friction is applied from stage to stage.

Manual mode

In this mode the program uses the Ka and Kp values defined in the SOILS Type dialog. By selecting this option, a separate tab appears for Ka and Kp values for each soil type. You can use this mode when you have to model complex sliding surfaces that may not be directly captured by automatic procedures.

### 图 2.6.8 推力选项按钮

#### 可以选择下列选项:

КаКр АUTO	根据墙的摩擦角和地震条件,软件自动选择 Ka 和 Kp 计算公式。推荐采用该模式
KaKp USER	用户自定义选择每个阶段计算 Ka 和 Kp 的公式
Kakp Man.	软件使用土层对话框中定义的 Ka 和 Kp 值。

	Ka Kp 主要选项	
ſ	A:土压力系数ka, kp	٦
	◯ 全自动控制(自动控制K≥和Kp)	II.
	◎ 用户输入	
	⑦ 选项A: 全部用户输入 ◎ 选项B: 适当调整初始参数	
	选项 B: 参数	
	☑ 根据摩擦角和设计方法的修改, 自动调整Ka和Kp.	
	□ 根据地表倾角的修改, 自动调整Ka和Kp	
	□ 考虑地震效应,自动调整Kp	
	B:初始静止土压力系数Ko值	
	🔲 当摩擦角修改时调整Ko(例如,欧洲规范 7等)	
	- Ka - Kp 公式	
	☑ 高级: 允许修改每个阶段,每个设计断面的Ka和Kp.	
	确定 取消	
C		

图 2.6.9 Ka 和 Kp 主要选项对话框

#### 对话框中有以下选项:

全自动控制(自动选择 Ka 和 Kp)
用户输入
选项 A: 全部用户输入(如果选择了用户输入)
选项 B: 适当调整初始参数(如果选择了用户输入)
选项:根据摩擦角和设计方法的改变,自动调整 Ka 和 Kp (如果选中了选项 B)

Т

选项:	根据地表倾角的改变,自动调整 Ka 和 Kp(如果选中了选项 B)
选项:	考虑地震效应,自动调整 Kp(如果选中了选项 B)
选项:	当摩擦角改变时调整 K0
选项:	允许修改每个阶段,每个设计断面的 Ka 和 Kp

■ 考虑墙面摩擦:选择任意墙侧(被动侧和主动侧)是否考虑墙面摩擦,以及定义墙面摩擦的计算方法。



图 2.6.10 考虑墙面摩擦

选项定义:

选项:设置墙摩擦角为零
选项:设置墙摩擦角为土体摩擦角百分比(0-100%)
选项: 设置墙摩擦角为指定值
选项: 主动侧墙摩擦角使用不同值
设置主动侧不排水分析时竖向粘聚力(极限平衡法)
设置被动侧不排水分析时竖向粘聚力(极限平衡法)
黏土考虑墙摩擦角

推力计算选择"用户模式"之后(选项如图 2.6.8 所示),可以手动选择主动/被动土压力系数的计算方法,如图 2.6.11:



图 2.6.11A 用户模式: 主动侧考虑墙面摩擦选项

选项:	忽略墙面摩擦
选项:	使用 Coulomb 方法(包含墙面摩擦)



图 2.6.11B 用户模式: 被动侧考虑墙面摩擦选项

■ 极限平衡法-主动土压力: 定义极限平衡法时主动侧土压力计算类型。



图 2.6.12 主动土压力系数选项

- ▶ 主动土压力: 主动侧使用主动土压力。
- ▶ Ka和 K0之间: 土压力大小处于主动土压力和静止土压力之间。可以在窗口中定义 m

值。

介于Ka与Ko之间	主动土压力			x
_1. 选项				
	$\sigma$ .drive = $\sigma$ h.activ	e + m (ơh.Ko -	$\sigma_{\rm ,h,active})$	
			m 0.5	
沉里心的				
反直列权				
◎ 所有阶段				
💿 阶段	Stage 5			-
💿 应用阶段	从阶段 s	Stage O		-
	至阶段。	Stage 5		-
-				
			确定	取消

图 2.6.13 主动土压力系数介于 Ka 和 K0 之间

- ▶ **静止土压力**:主动侧使用静止土压力。
- ▶ Peck 1969 apparent:单击该选项后,弹出计算选项对话框。在对话框中,定义计算黏性 土压力乘子 mClays,并且有一个选项,硬土层中不允许将土压力降为零,下限为 50%。

计算选项 for Both Walls
Peck压力选项
粘土压力乘子 (m x g h), mClays= 0.3
<ul> <li>硬土层中压力不允许降到零,下限为 50%</li> </ul>
应用修改于 ● 仅适用于当前阶段 (5) ● 全部阶段 ○ 从阶段 1 至 5
确定取消

图 2.6.14 Peck 1969 apparent 对话框

自定义梯形:单击该选项后,弹出计算选项对话框。在对话框中,可以定义主动土压力 M 乘子,顶部三角形土压力占开挖深度百分比,底部三角形土压力占基坑开挖深度百分比。

计算选项 for Both Walls	x
梯形土压力选项	
主动土压力乘子 × M=	1.3
顶部三角形土压力占基坑深度的 比例	25
底部三角形土压力占基坑深度的 比例	0
Maximum pressure from	В х Нехс
应用修改于	
◎ 仅适用于当前阶段 (5)	
○ 全部阶段	
从阶段1	至 5
确定	取消

图 2.6.15 自定义梯形对话框

FHWA apparent: 单击该选项后,弹出计算选项对话框。在对话框中,可以定义不排 水黏土土压力乘子 mClays,主动土压力 M 乘子和选项:硬土层中不允许将土压力降为 零。

计算选项 for Bot	h Walls	x
-FHWA = Pressur	e Options	
粘土压力乘子	(m x g h) mClays=	, = 0.3
主动土压力	b乘子x M∶	= 1.3
注意: FHWA 推荐:	最小值 M=1	.3
■ 硬土层中压力 50%	不允许降到	]]寥,下限为
📃 Max pressure	e B x Hexc	
应用修改于——		
💿 仅适用于当	前阶段 (5	)
○ 全部阶段		
○ 从阶段	1	至 5
	确定	取消

图 2.6.16 FHWA apparent 对话框

- Adaptive apparent pressures: 对于分布复杂的土层来说,这是一种生成土压力更加灵活的方法。该方法基于 FHWA 方法,但是可以根据每层土的强度计算得到的权重系数 调整土压力。
- ▶ German EAB:选择该选项,则表观压力采用 German EAB 方法计算。

2 阶矩形:单击该选项后,弹出计算选项对话框。计算基坑开挖深度以上的土压力根据 M1*Hexc(水位线以上),Mz*Hexc(水位线以下)。在对话框中,可以定义乘子M1 和M2.

计算选项 for Both Walls
2阶矩形压力
水位以上 乘子M1(x Hexc) <mark>3.7717</mark>
水位以卜乘子M2(x Hexc) 1.8858
注意: 在该模式下, 矩形主动土压力按M1乘以开 挖探度进行计算(对子水位线以上土压力), 以 及 M2 乘以开挖深度 (对子水位线以下压力)
应用修改于
<ul><li>● 仅适用于当前阶段 (5)</li><li>○ 全部阶段</li></ul>
○从阶段 1 至 5
确定取消

图 2.6.17 2 阶矩形对话框

▶ 用户自定义土压力:可以定义每个标高土压力值。

σH	r Cust	om pressure	es left wall		x
	自定义	土压力			
		Elev. (m)	Pressure (k		
	•	0	0		
		-20	0		
	*				
	i ⇒itk#ei	田大司洪博士	65百亩公水亚。	トロカ 電力主程度	市选择自会公
	5000 E	用住口远墙工 选项来使用	的日廷入小十。	山玉/J, 斋住主性庁	中地种日准人
1	在每个「	阶段使用自定	义压力变化——		
0	> 수 위	18分段 (4	<b>本阶段</b>		
	◎ 从欧	設		至5	
ŀ					
			确认	取消	
_	-				

图 2.6.18 自定义土压力对话框

自动搜索方法选项:单击该选项后,弹出计算选项对话框。在对话框中定义当地表不规则时,如何计算主动和被动侧土压力。

自动推力计算	Sector datase -	x
1. 分析类型(当地表非规	见则)	
Culman's method - Linear	wedge search between specified limits to determine Ka-Kp thrust	▼
🔲 Use distribution ang	le approach for active pressures	
-2: Cullmans方法选项(约	<b>《性楔形分析)</b>	
主动楔形(2墙)		
□ 被动楔形(2墙)		
7 优化期形分析		
Use rating force appr	oach for passive pressures	
楔体搜索界限		
王动区界限(x H tan(4	45-tr/2))	
min 0.75 max	1.25 5.400	
使动区齐段(X n tan(4	5+II/2))	
0.75	1.25	
设置阶段		
◎ 所有阶段		
📀 阶段	Stage 5 👻	
💿 应用阶段	从阶段 Stage 0 🚽	
	至阶段 Stage 5	
		确定 取消

#### 图 2.6.19 楔体搜索分析选项

有以下选项可以选择:

- a) Culman's 分析方法。楔形搜索方法计算主动侧和被动侧土压力;
- b) 自动搜索分析。根据用户自定义搜索界限。

楔形分析选项对话框中选项:

选项:双墙使用主动楔形分析
选项:双墙使用被动楔形分析
选项:优化楔形分析
定义主动楔形分析和被动楔形分析界限值。当优化楔形分析选项选中后才能够使用

自动推力计算					×
- 1. 分析类型(当地表非规 Automatic search with non	い) I-linear surfa	aces			•
Use distribution ang	le approac	h for active pressures			
- 2.A: 主动土压力搜索选	项		2.B: 被动土压力搜索选	项	
点数里	4		点数里	4	]
Xsearch.min m1=	0.25	x Hwall	Xsearch.min m1=	0.9	x Hwall
Xsearch.max m2=	4	x Hwall	Xsearch.max m2=	5	x Hwall
DX 容差	0.05	m	DX 容差	0.05	m
初始 DX	0.5	m	初始 DX	0.5	m
墙间隔数	2	m	墙间隔数	2	m
Include nails to reduce	e active thr	ust	🔲 包括土钉或锚杆		
● 设置阶段 ◎ 所有阶段					
◎ 阶段	Stage 5		•		
💿 应用阶段	从阶	段 Stage O			
	至阶	段 Stage 5			
				确定	き 取消

图 2.6.20 非线性地表自动搜索选项

极限平衡方法-坑底以下土压力:选择坑底以下主动侧土压力计算方法。通常建议保持 默认设置即法向选项。尽管 Ka-主动选项设置坑底以下土压力为主动土压力,0 土压力 选项设置坑底以下土压力为零。还有一个选项定义土压力,该选项根据水位线以上和以 下起始土压力以及主动土压力斜率定义。



图 2.6.22 坑底以下主动土压力计算选项

── 根据开挖深度定〉	X m x Нехс		BOTTOM OF EXCAVATION	-
	主动土压力 Pao	0 kPa		Pao
水位线以上主动	)土压力斜率 ma1 h十压力斜率 ma2	0 kN/m	WALL EMBED. D	
☑ 使用自定义主动	土压力斜率方法			maz –
<b>● 使用自定义主动</b> 受置阶段	土压力斜率方法		<u> </u>	ma2 -
✓ 使用自定义主动 股置阶段 》所有阶段	土压力斜室方法			ma2 -
✓ 使用自定义主动	土压力斜车方法 Stage 5			ma2 -
✓ 使用自定义主动	<b>土压力斜率方法</b> Stage 5 从阶段	Stage 0		

图 2.6.23 用户自定义坑底以下主动和被动土压力

**极限平衡法-被动土压力:**选择被动土压力类型。抗力侧指定是提供土体抗力的开挖侧(典型抗力侧是指坑内)。

Resist Pa	Pressures:	Supports: Beam * Cantilever: Free-earth * Beam: California Trenching and Shoring M
Ke Ke	被动土压力 设置抵抗力	] ]等于被动土压力除以一个安全系数
	静止土压力 Ko乘以乘·	]系数 子
KP	User defi	ned passive pressures
KP	User defi	ned passive slope and start pressure
	考虑并且编	歸攝最大被动土压力极限
	Ignore pa	assive resistance for specified depth
3D E	ffects for	passive
	Assume 3	D Effects for passive

图 2.6.24 被动土压力系数选项

1:	抗力侧使用被动土压力(图 2.6.25)
2:	设置抵抗力等于被动土压力除以安全系数(图 2.6.26)
3:	静止土压力
4:	静止土压力*乘子
5:	被动土压力: 根据起始被动土压力, 水位线以上和水位线以下被动土压力斜率定义
6:	选项:编辑最大被动土压力极值(图 2.6.27)
7:	选项: 忽略坑底以下指定深度的抗力
8:	选项:假定被动压力的 3D 效应

计算选项 for Both Walls	J
被动安全系数	
被动侧静止土压力乘子 M= 1.5	
应用修改于 ② 仅适用于当前阶段 (5)	
<ul> <li>○ 全部阶段</li> <li>○ 从阶段</li> <li>1</li> <li>至 5</li> </ul>	
确定取消	

图 2.6.25 静止土压力乘子对话框

在此对话框中可以定义作用在抗力侧静止土压力乘子 M。

, 计算选项 for Both Walls	Γ
被动安全系数	
用安全系数除以被动土压 力 FS= 1.5	
- 应用修改于	
◎ 仅适用于当前阶段 (5)	1
◎ 全部阶段	
○从阶段 1 至 5	
确定取消	

图 2.6.26 被动土压力乘子对话框

在此对话框中可以定义安全系数 FS。被动土压力除以该值得到抗力侧土压力。

计算选项 for Both Wa	lls X					
限制最大被动土压力						
□ 指定被动土压力最大值.						
最大被动土压力 sp'max=	2.9985 kPa					
应用修改于———						
◎ 仅适用于当前阶段	£ (5)					
○ 全部阶段						
○ 从阶段 1	至 5					
确	定取消					

图 2.6.27 限制被动土压力最大值对话框

在此对话框中定义被动土压力最大值。

选择"用户自定义被动土压力选项",自定义土压力。

User passive pressures left wall								
	-	-						
	Elev.	(m)	Passive	Pre				
•	0		0					
	-20		0					
*								
								l
÷rtrk //		4-1mm L	وروب محافظ المحافظ الم				- 10 - 41 - 51 - 51 - 51 - 51 - 51 - 51 - 51	
这些什+	明在已	选墙上	的自定义	水平土压力	),需在言	主程序中进	择自定义	ĸ
这些们 土压力	F用在已j j选项来f	<u>先墙上</u> 更用	的自定义	水平土压力	),需在3	主程序中进	择自定义	K
这些们 上压力	明在已过	<u>选墙上</u> 使用	的自定义和	水平土压力	), 需在3	主程序中选	择自定义	ĸ
这些作	明在已)	选墙上 更用	的自定义和	水平土压り	),需在3	主程序中选	择自定义	ĸ
这些作	明在已知	先墙上	的自定义。	水平土压力	),需在3	主程序中进	择自定义	K
这些们 上压力 王每个	F用在已过 可选项来1	选墙上 使用 月自定	的自定义和	水平土压力	), 需在言	主程序中递	择自定义	K
这些们 主压力 王每个	F用在已行 口选项来1 阶段使用	选墙上 更用 月自定	的自定义) 义压力变(	ጵሞ±压ታ ሂ	), 需在主	主程序中进	择自定义	K
这些低力 至一日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	F用在已过 功选项来1 節阶段使用	选墙上 使用 月自定 1	的自定义; 义压力变付 )) 本阶段	水平土压力 と 至5	), 需在言	主程序中递	择自定义	K
	F用在已过 可选项来1 阶段使用 部阶段	选墙上 使用 月自定 1	的自定义; 义压力变( ) 本阶段	水平土压 オ と 至5	), 需在目	主程序中边	择自定义	K
这些压力 生年 年 年 年 日 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	F用在已 可选项来们 阶段使用	选墙上 使用 目定 1	的自定义; 义压力变( ) 本阶段	水平土压力 と 至 <mark>5</mark>	), 需在目	主程序中边	择自定》	K
这些任 生 王 年 年 年 年 年 日 一 人 に	F用在已过 可选项来1 阶段使月 部阶段	选速用 月自定 ① 1	的自定义; 义压力变( ) 本阶段	水平土压 よ 至5	),需在目	主程序中述	は择自定り	<

图 2.6.28 限制被动土压力最大值对话框

忽略坑底以下一定深度范围内的被动压力:

忽略被动抗力选项		×				
☑ 指定开挖面以下忽略被动抗力的深度						
	忽略被动抗力的深度 0.5 m					
设置阶段						
◎ 所有阶段						
💿 阶段	Stage O	-				
💿 应用阶段	从阶段 Stage O					
	至阶段 Stage O	-				
		HT 244				
	「明正」	取)月				

图 2.6.29 忽略坑底以下被动土压力对话框

### ▶ 极限平衡法-悬臂:选择分析悬臂墙的方法。

Supports: Beam *	<b>H</b> 2 ^ <del>2</del>
Cantilever: Free-earth *	高级洗顶 NI Analysis
Free earth method	
Fixed earth method	
Use Rowe's Moment Reduction	
Rowe's method of moment reduct	ion can be applied to cantilever walls in only

图 2.6.30 悬臂方法

包括以下几种方法:

- a) **Free Earth Method**
- b) Fixed Earth Method
- c) Rowe's **力矩折减法:** 该方法可用于仅有黏土或摩擦条件情况下的悬臂墙计算。此 方法会折减自由土力矩,应谨慎使用。

■ 极限平衡法-梁分析选项:当建立了多道支撑时,程序提供了许多分析梁结构的方法,就算其弯矩,剪力等。

	Supports: Beam - A
	Cantilever: Free-earth * 高級洗项 NI Analysis
	Beam: California Trenching and Shoring Manual 2011  Arching
В	eam method for multiple supports
	Beam: Blum's method Hinges at supports, virtual support at point of zero net shear below excavation
	Beam: FHWA Simple Span Method Method assumes hinges below the 1st support level, and a hinge at excavation subgrade. Moments calculated with a simple span method.
	<b>Beam: Simple span with negative moments</b> Method similar to FHWA but virtual hinge is added below the excavation at point of zero loading shear. Some negative moments are assumed in approximate method as percentage of positive span moments.
	Option: Define negative moment percent
	Beam: California Trenching and Shoring Manual 2011
	Method described in CALTRANS California Trenching and Shoring Manual 2011, fixity point assumed where simple rotational moment about lowest support is achieved.
	Additional options for California Trenching Manual approach

#### 图 2.6.31 墙梁分析选项

每种方法都提供了一种简单分析有支撑的支挡结构的方法。设计人员应该意识到每种方法自身的局限性(比如,极限平衡法忽略了施工阶段间的相互影响等)。简单的分析方法有:

- a) Blum's method:该方法在美国东海海岸和德国广泛采用。它假定支撑位置和坑底以下净 土压力为零的位置是铰接。
- b) FHWA simple span method:FHWA GEC4 详细介绍了该方法。它假定支撑之间是简支 (除了顶部支撑,连续梁假定到第二道支撑或者到坑底位置)。坑底位置假设为铰接。
- c) Simple span with negative moments:方法和 FHWA 方法类似, 坑底以下净土压力为零的 位置是铰接。程序还提供了一种通过减小负弯矩(取最大正弯矩的某百分比)的方法减 小最大弯矩。
- d) California Trenching and Shoring Manual 2011:在 CALTRANS Trenching and Shoring Manual 2011 中有这种方法的详细描述,在 California 广泛使用。该方法和 FHWA 方法 类似,除了假定坑底以下某一点(绕最底层支撑力矩为零的点,仅考虑最底层支撑以下 的荷载)是固定点。因此,在假设固定点的位置处剪力和弯矩都等于零。程序选项提供 了一种通过减小负弯矩(取最大正弯矩的某百分比)的方法考虑弯矩的减少。也提供了 一个选项,考虑其他因素,如图 2.6.32。

加州交通局支撑手动分析	先顶 🛛 🔪 🖌
县轄墙和单层支撑墙洗证	
☑ 加州交通局近似方法计	、 -算位移
	店拟的嵌固深度= %嵌因25 %
多道支撑进而	
☑ 耿间文跨度白分比得到	基底页问位移(合理值8-20%,默认值15%)
	取简支跨度的百分比得到15 %
☑ 顶部支撑力乘以一个系	<数(DM7.2 pg 103, 推荐1.15).仅适用于多道支撑.
	乘以顶部支撑力的系数1.15
Multiple support ale	er spens M= w l^2/wel
attipie support tie	a spans III- II Elivar
	M= wL^2/val, val= 8
- 设置阶段	
◎ 所有阶段	
◎ 阶段	Stage 5 🗸
💿 应用阶段	从阶段 Stage 0
	至阶段 Stars 5
	Linne Bodge o
	确定 取消

图 2.6.32 加州交通局支撑手动分析选项对话框

加州交通局提供的计算方法,假设在力矩平衡位置处有一个虚拟固定节点,悬臂墙生成 的位移更小。尽管这个假设可以生成更加真实的悬臂墙体变形,但是它也有理论上的限制。 真实情况下,考虑土体材料参数取值偏保守(例如,忽略有效粘聚力等)这种情况,这个选 项可以调整结果考虑这种情况。

对于多道支撑加州交通局方法也调整最底层支撑以下墙体位移。虽然手册 2011 很少涉 及多道支撑计算方法,当位移假定为简支梁位移的 15%,结果和手册 2011 中给的结果一致。

和加利福尼亚实践一致,一些工程师根据 DM7.2, pg.103 的方法,假设计算的支撑反 力增加 15%,选择增加最项层支撑的荷载。

■ 高级选项:关于静止土压力和允许从属单元产生拉伸裂缝。



图 2.6.33 高级选项

用摩擦角调整 K0	由于材料改变φ'改变,调整K0(欧洲7)
允许从属单元拉伸裂缝	主节点和从属节点(墙或支撑单元)之间允
	许产生拉伸裂缝。该选项可用于内衬墙模拟
	的计算中。

#### ■ 土拱分析:

土工分析选项用来定义非线性分析中的拱效应。下来菜单中提供了两个选项:

- ▶ 非线性分析中考虑拱效应
- ▶ 分线性分析中忽略拱效应

单击该按钮, 弹出拱效应对话框, 图 2.6.34.

土拱选项,适用于非线性约	分析 📃 📉
1. 土拱选项 回	
编辑高级选项	参数重置
高级选项	
	土拱折瑊比率最大值(开挖面和支撑间)0.25
	土拱改变重为零处地的比率 0.7
	支撑处应力比的改变量 -1
	支撑以上在跨度比范围内零起拱 1.3
	支撑间负拱压力比 0.3
☑ 自动调整土拱应力方:	法
设置阶段	
◙ 所有阶段	
📀 阶段	Stage 0 👻
📀 应用阶段	从阶段 Stage 0 👻
	至阶段 Stage 0 👻
	确定即消

图 2.6.34 拱效应选项对话框

对话框中包含以下选项:

- ▶ 选项编辑高级选项
- ▶ 选项参数重置
- ▶ 定义开挖面和支撑间土工折减率最大值
- ▶ 定义土拱该变量为零处的比率
- ▶ 定义支撑处应力比的改变量
- ▶ 定义支撑以上的零起拱范围内的跨度比
- ▶ 定义支撑间负拱压力比
- ▶ 选项自动调整土拱应力方法
- ▶ 选项使用最底层支撑处初始 Ka 应力调整土拱压力

对于拱效应选项,我们推荐使用软件默认设置。

## 2.7 边坡稳定性菜单





■ 选项:单击 选项 该选项弹出边坡稳定性对话框。可以定义边坡稳定性分析的方法 和选项。对话框中包含的选项如下图 2.7.2。详细菜单描述见 3.13 节。

7712 2 31	- market -	- als des talses					. 41. L -		
· 刀制刀本 ] 进场公报专注	2. 圆弧甲心	3. 半伦搜索	ς  4. Ξ	EZD/ 俄Z刀	5. 文择	. 6. <u>⊨</u>	机图   7.	二维何報	
应择力初力运 @ 比害茎		◎ 断定	<u>窜</u> (各	中间会力の	古水亚方的	立本角の	大学教	1	
● 中日日	. 莱格斯	() 20 A	885 VIK	wedieb W	area)	JXH 0	- 20m8X	· · · · ·	
	1 日本共共日	O or di	nary (o	weursn m	(liou)				
塵根斯顿・	普赖斯参数(	条块间满足力	和力矩型	平衡的微分	)方程)				
m 1			FSO	1					
<b>v</b> 1			2.0	0					
£(n) = [-									
1(x) - [s	INUI * V	v)] m							
	医小脚去占约	₽ <u>+`\</u> ±,/₽`/ <del>₽35</del>	100						
	每个搜索点的峰	最大迭代次数 收敛误差	100	%					
1	每个搜索点的维	最大迭代次数 收敛误差	100	%					
1	每个搜索点的建	最大迭代次数 收敛误差 刃始条块宽度	100 1 1						
	每个搜索点的追	最大迭代次数 收敛误差 刃始条块宽度 最小条分数	100 1 1 10	% m					

图 2.7.2 边坡稳定性分析选项对话框





图 2.7.3 边坡稳定性分析方法列表

毕肖普	使用毕肖普方法(仅圆弧滑动面)
GLE	使用摩根斯顿-普赖斯法
斯宾塞	使用斯宾塞方法
Ordinary	使用瑞典条分法
储存中间滑移面结果	储存全部中间滑移面和安全系数

在一些设计规范(例如 AASHTO)在不同情况下(长期,短期等),定义的最小安全系数是不同的。一旦执行分析,将会显示出各种情况下最小的安全系数。

典型滑坡条件	使用一般安全系数
临时开挖	开挖持续 48 小时
临时结构	临时长期结构
永久结构	永久长期结构
极端条件-地震	极端条件考虑地震作用
极端条件-高水位	极端条件处于高水位



■ **滑裂面**:单击 * 按钮,定义滑裂面的形状。







2.7.4 半径搜索选项列表

单一半径	只定义一个半径
半径通过指定范围	指定半径搜索范围坐标
半径介于指定值值之间	半径值在初始值和最终值之间搜索
半径从墙底开始	半径搜索从墙底开始,达到一个用户指定值

■ **绘图工具:** 绘制滑移面或者圆心搜索范围等。

图标	描述
$\bigcirc$	绘制单一圆弧滑动面
Press.	通过在断面图上单击一些点,绘制自定义滑移面
4	定义滑移面通过的起点和终点
\$	定义块体楔形分析通过的两个点
E	定义滑移面圆心搜索矩形范围
ĿJ	定义一个滑移面圆心(圆弧滑移面)

■ **土钉**: 定义模型中土钉材料属性。

	×	y	
±	钉	表	搁

■ **土钉表**: 表格 • 中包含了土钉基本尺寸和每层土钉的属性,以及土钉边坡 稳定性选项。这些选项也可以单独设置每层土钉。

								×
土钉列表								
名称	截面	角度 (°)	X head	Z head	锚固段 长度	自由段 长度	水平间距	
						确定	取消	
	-土钉列表 名 杯	土钉列表         名称         載加	_土钉列表 			土钉列表	土钉列表 春 截面 角度, X head Z head 擬图段 皂 度段	土钉列表         森 截面       角度, X head       X head       第個目段       水平间距

图 2.7.5 土钉表格对话框

土钉表格	<b>大</b> 绘制土钉	<b>上</b> 绘制土钉群	ŧ 计算
考虑	歐所有土钉	的剪力	
忽略	的有土钉	的剪力	
只考	意思外部稳	定性	
考虑	歐外部和内	部分析	
重余	術電土钉	在面层的位	置
激演	所有的土	钉	
冻约	訪有土钉		
清晰	新有土钉	(永久的)	

#### 2.7.6 土钉表格选项列表

### 表格中包含以下选项:

包含所有土钉剪力
忽略所有土钉剪力
仅考虑外部稳定性
同时考虑内部和外部分析
重新布置土钉在面层的位置
激活所有土钉

冻结所有土钉	

清除所有土钉(永久)

外部稳定性假设土钉拔出破坏。当包含内部分析时,即考虑滑裂面从面板位置出现。



▶ 绘制一根土钉:单击 绘制土钉,在模型中添加一根土钉。在面层上单击一点,再单击 土钉终点。



▶ 绘制土钉群:单击 绘制土钉群,在模型中添加几排土钉。靠近面层上单击一点,再单击 土钉终点。



■ **分析**:单击 <del>分析</del>,程序执行边坡稳定性分析并计算边坡安全系数,但并 未考虑墙体结构分析。使用该选项之前必须先执行计算,并且不再改变设置。

### 2.8 稳定性+菜单

<i>(</i> );	一般	分析	地震	边坡	稳定性+	设计	结果	报告	视图	优化	帮助	
口 切 Zcut ( 弹性地基	新増于	墙体嵌固	<b>1</b> (安全系数) (安全系数)	+算公式 全系数	↓ 抗隆起稳定性和 ↓ 抗隆起移	<b>山</b> 克拉夫方法 急定性	<b>δ</b> ₂	锋 Builc Anal	<mark>く</mark> ding Damage lysis Settings 地表沉降	3D sett Buildi ≩	elements and ng Damage	<ul> <li>计算岩土轴向承载能力 桩计算设置</li> <li>轴向承载力(桩计算设置)</li> </ul>
				1								

图 2.8.1 稳定性+菜单

在这个标签下,可以选择嵌固安全系数,坑底抗隆起稳定性和地表沉降相关选项。

■ **极限平衡法安全系数**:当进行弹塑性地基梁法分析时,选择使用传统安全系数。(被动土压力根据极限平衡法计算得到)

■ **非线性分析安全系数:**定义根据极限平衡法计算得到的主动推力和被动抗力的极限 值。

■ 弹塑性地基梁稳定性:使用切断于墙 Zcut 命令,冻结 Zcut 标高以下墙所有的节点。

■ **墙嵌固稳定性计算公式:**采用极限平衡法时,选择计算嵌固安全系数的计算方法(图 2.8.2)。



■ **坑底抗隆起稳定计算和克拉夫方法**:根据半经验克拉夫方法,定义是否预测墙最

大位移。单击该选项向下箭头后,可供选择的选项如图 2.8.3。单击______,将弹出 图 2.8.4 对话框。

<b>し</b> 抗隆超稳定性和 、	克拉夫方法	<b>し</b> ま沉降	Building Damage Analysis Settings	3D settlemen Building Da	nts and image	计算岩土轴向承载能力 桩计算设置	
F	计算隆起稳 抗隆起稳定	<b>急定性安全系</b> 全性指标主要	後 数 夏用于评估坑底稳定	生,主要适用于都	黏性土.		
δ _x HH EI/gw H ⁴	克拉夫方法 克拉夫方法	<b>长估算墙的</b> 虽 去(1990),	<b>大水平位移</b> 根据隆起稳定性和标	起住化系统刚度	提出一种	估算墙体最大水平位移的方法。	

#### 图 2.8.3 抗隆起稳定性和克拉夫方法选项列表







■ **地表沉降**: 定义是否估计地表沉降。可以选择如图 2.8.5 中的选项。单击 , 弹出计算方法选项窗口。对于极限平衡法,最原始的方法是使用克拉夫方法考虑一些修 正系数计算位移。只有选择"使用修正克拉夫"选项才能激活修正系数选项。



图 2.8.6 地表沉降计算选项对话框

下表列出了对话框中可以定义的参数:

根据开挖深度定义 Sprandel 长度 Ds
定义最大凹槽沉降值 Dcmin
反弯点常数
沉降计算范围
悬臂墙 Avs/Ahs(竖向 Sprandel 沉降体积与水平 Sprandel 位移体积比
值)
支撑保留 Av/Ah(竖向沉降体积与水平位移体积比值)
支撑拆除 Av/Ah(支撑拆除后,竖向沉降体积与水平位移体积比值)
选项: 在弹塑性地基梁分析中使用克拉夫方法。该选项使程序在计算

更多克拉夫方法请查看理论手册。

■ **岩土轴向承载力:** 定义是否计算岩土轴向承载力。单击桩计算设置 桩计算设置 选 项, 弹出桩计算设置对话框(图 2.8.7)。

桩计算设置		S	3
岩土轴向承载安全系数		侧摩阻选项	
许用安全系数	3	☑ 极限侧摩阻(极限深度)= 20 x D	
地震安全系数	2	钢材侧摩阻系数 66 %	
端部承载力安全系数FSbear	3	混凝土侧摩阻系数 80 %	
抗拔侧摩阻系数 5	0 %	🥅 侧摩阻力乘子 by m=	
		☑ 墙类型允许的情况下使用土体粘结力计算承载力	
- 端部承载力(桩端阻力)选项		粘结抗剪强度	
☑ shata即取力(租端阻力)达坝		🔄 多里柘紫阻刀	
☑ 开口管桩的土塞效应(使用全截面面积 □ 使用 H型梁的桩头(Atip = D x Bf)	)	▼ 粘结糸数 粘结阻刀 粘结系数 乘子 (ksf	
		c=0 到 79.9978 0.8	
		对于 ≥ 160.000 0.5	
👿 Ignore skin friction above excava	tion (for	compression piles) 确认 取消	
			_

图 2.8.7 桩计算设置对话框

对话框中包含的所有选项如下表。

选项	描述
允许安全系数 FSall	极限岩土承载力除以该值得到设计承载力
地震安全系数 FSeq	当考虑地震工况时使用的安全系数
桩端部承载力安全系数 FSbear	桩端部承载安全系数
抗拔侧摩阻力百分比	桩抗拔摩阻力/桩抗压摩阻力
选项:包括桩端承载力(承压桩)	选中该选项,计算时包括桩端阻力承载力
选项:空心管桩土塞效应(全断面)	选中该选项,计算中包括桩端阻力承载力
选项:使用H型梁的桩头	使用 H 型钢桩墙时,选中该选项桩端阻力包
	含整个H型梁截面
选项:限制极限侧摩阻力(极限深度)	计算桩竖向承载力时使用极限侧摩阻力的方
	法。在该方法中,根据桩的尺寸定义在指定
	深度处达到极限侧摩阻力。注意尽管该计算
	结果偏保守,但是根据相关研究这种方法证
	明是错误的
钢材侧摩阻力系数	墙体为型钢时,墙体侧摩阻力取为 $\delta$ /sin( $\phi$ )
	的百分比。
混凝土侧摩阻力系数	墙体为混凝土时,墙体侧摩阻力取为 $\delta$ /sin
	( ϕ ) 的百分比。
选项:侧摩阻力乘子	桩侧摩阻力根据土体有效摩擦角乘以该乘
	子。该乘子可以考虑包含应力释放和注浆压
	力在内的桩的安装效应。
选项: 当墙体类型允许时, 使用土体粘结强	选择该选项, 当墙体类型允许(土和混凝土
度	接触)时,使用土体对话框中定义的混凝土
	墙的侧摩阻力。
选项:指定乘子乘以粘结强度	桩体侧摩阻力根据粘聚力乘以一个指定乘子

	计算得到。这个乘子可以考虑包含应力释放
	和注浆压力在内的桩的安装效应。
选项: 使用粘结系数	桩土粘聚力根据土体粘聚力,采用三线方法
	计算得到。当土体的 C'或 Su 越高,提供的
	粘结力越小。

## 2.9 设计菜单



图 2.9.1 设计菜单

CO

■ **规范选项:**单击 读选项,定义分析中使用的结构规范设置(图 2.9.2)。这些规范设置控制结构规范和其他选项(图 2.9.3)。



图 2.9.2 规范选项
Structural code options	×
Concrete Code Options	
2:EC2-2004	•
Steel Code Options	
2:EC3 2005-CEN	•
Timber Code Options	
2:AASHTO LRFD 6th	•
	OK Cancel

图 2.9.3 结构规范选项

可用选项如下表:

Eurecode 2,3 设置	使用欧洲规范设计
US allowable	US allowable
AISC 2010 allowable	AISC 2010 allowable
US LRFD	US LRFD
AASHTO (US) LRFD	AASHTO (US) LRFD
使用不同规范	使用不同规范
不进行墙设计	不进行墙设计
高抗震标准	结构设计使用高抗震标准

#### 混凝土规范

1:ACI 318-11 2:EC2-2004 3:EC2-German Annex 4:EC2-Cyprus Annex 5:EC2-French Annex 6:EC2-Austrian Annex 7:EC2-Italian Annex 8:EC2-Netherlands Annex 9:EC2-Czech Annex 10:EC2-Belgium Annex 10:EC2-Belgium Annex 11:EC2-Slovakian Annex 12:EC2-Danish Annex 13:EC2-Finish Annex 14:EC2-Swedish Annex 15:EC8-Greek Annex 16:EC8-Italian Annex 17:EC8-Austrian Annex 18:EC8-Bulgarian Annex 19:EC8-Cyprus Annex 20:EC8-Slovenian Annex 21:EC8-French Annex 21:EC8-French Annex 21:EC8-French Annex 21:EC2-Greek Annex 21:EC2-Creek Annex 22:EC2-Creek Annex 23:EC2-2004 24:AS 3600-2009 25:CN (China)

#### 钢材规范

1:ASD 1989
2:EC3 2005-CEN
3:LRFD 13th Edition 2005
4:NTC 2008
5:EC3 2005-Bulgaria
6:EC3 2005-Slovenia
7:EC3 2005-UK
8:EC3 2005-Norway
9:EC3 2005-Sweden
10:EC3 2005-Finland
11:EC3 2005-Denmark
12:EC3 2005-Portugal
13:EC3 2005-Germany DIN
14:EC3 2005-Singapore
15:EC3 2005-Greece
16:ANSI/ALSC 360-10
17:AISC 360-10 ALL.
18:BS 5950-1:2000
19: AS/NZS 4100
20:UN (Uhina)
1:Service, a=0.35
2: AASHIU LKFD 6th

DES
Members

**构件**:单击 EUR Sizes ▼,选择钢结构和钢筋混凝土标准。

DES Members: EUR Sizes *		<ul> <li>✓ 桩墙折</li> <li>● 考虑作</li> <li>安全系数</li> </ul>	拔承载力制 用于墙上的
	全部		
	美国尺寸(钢梁,钢筋)		
0	欧洲尺寸 (钢梁,钢筋)		
	通用梁系统		
:0:	South Korean		
*	Chinese Standards		
<b>1</b> 12	Australian		
图 2.9.4 构件规范			

可用选项如下表:

所有尺寸
美国尺寸
欧洲尺寸
通用梁系统(英国)
韩国尺寸
中国标准

■ 一般设置: 在对话框中可以选择不同国家典型的默认设置(设计规范,安全系数, 尺寸标准等)。英国标准提供了两种设置方法。尽管 BS5950 规范(混凝土规范使用的 是 EC2(欧洲规范 2),钢材使用 BS5950,安全系数时 1.5)使用了正常使用设计方法, 默认的英国标准结合了欧洲的建议。

选择地区			×
默认		*	
C*		C:	
B\$5950	*	*2	
		确定	取消

图 2.9.5 地区规范

■ 墙体结构安全性: 定义墙体结构安全系数。当使用承载能力极限设计规范, 进行墙 体承载力设计时, 墙体承载力(弯矩和轴力)除以该值。

杜墙抗拔承载力除以安全系数			
🗌 考虑作用于墙上的轴向荷载.			
安全系数	1		
	墙体	\$\$\$	
		人工业业工	

2.9.6 墙体结构安全系数选项

■ **包括墙上轴力**:选中该选项,则包括例如锚杆作用在墙上的轴向荷载。注意这些荷载不除以墙体结构安全系数。

■ **锚杆安全性**: 定义锚杆极限抗拔承载力设计时选用的抗拔安全系数。选择自定义 STR 选项,可以手动输入允许应力系数(承载力=允许应力系数*Asteel*Fy)。请注意 某些设计规范会取代这个设置(EC7, DM08等)。

☑ 岩土安全系数		α= User defined ∗		
安全系数	1.35		结构应力系数	0.6
☑ 用土体粘结力计算 岩十承载力				
锚杆抗拔安全性				

图 2.9.7 锚杆安全性选项

■ 荷载组合:指定模型中荷载类型,定义不同荷载组合。这样可以快速的计算不同荷载组合。单击 LC 选项按钮,将会弹出荷载组合对话框,在此定义荷载组合。

LC	☑ 使用荷载组合		
洗顶	选择荷载组合		
*	LC 1	*	
荷载组合			

图 2.9.8 荷载组合选项

荷戴组合		x
荷載组合 组合名称	局部荷载 基础-建筑物 其他三维荷载 线荷载	
添加组合	荷载名称 - 索引 荷载行为	
刪除组合		
复制组合		
粘贴组合		
全部取消	条形超載         荷載名称 - 索引         荷載行为	
	确认即	则

图 2.9.9 荷载组合对话框

在对话框中可以定义如下:

- ▶ 添加新的荷载组合
- ▶ 删除荷载组合
- ▶ 复制荷载组合
- ▶ 粘贴荷载组合
- ▶ 删除所有荷载组合

模型中任何一个阶段定义的全部荷载会出现在荷载(线荷载,条形荷载,基础荷载,建 筑物,3D荷载)各自标签中。每种荷载都可以定义荷载行为,荷载行为有:

- ▶ 自动
- ▶ 有利
- ➤ 不利
- ▶ 忽略

可以定义各种荷载组合。设计菜单>>荷载组合>>选择荷载组合,从选择荷载组合下拉菜单中选择使用的荷载组合。

■ 墙体嵌固深度优化:使用极限平衡法时,可以选择优化嵌固深度安全系数。请注意 这个选项只有执行极限平衡法时,才会显示。最小嵌固安全系数是使用长度增量 DL 计 算新的安全系数时,当前阶段的最小嵌固安全系数。

▼	Req. FS 1.4				
	理寐(12旦用丁120円〒 衡分析)	Free earth FS 1.		1.5	
		DL	0.5		
	墙体嵌固优	化			

图 2.9.10 墙体优化选项

#### ■ 钢板桩腐蚀

当模型中墙体是钢板桩时,设计菜单中会显示该菜单。单击该选项后,弹出对话框。对 话框中定义检查结构设计寿命。最后一个开挖阶段之后,在单独添加一个阶段,这个阶段使 用该选项。对话框和选项将要在 3.7.3 章节介绍。

## 2.10 结果菜单

A -10	分析 地震	2 边坡	稳定性+ 设计	+ 结果	报告视图	优化 帮助	-	_				-	Contraction of the data	-
18 嵌固宏全性	🐪 祭块	🗍 墙体弯矩		〇〇 雪短承載は	目 墙体抗弯承载力	□ 4 有效水平土压力	4 場身浄息压力	📙 净水压力	Apparent	🛄 水压力	₷ 突涌安全系数	Nax 最大/小值	\$ 费用	🔗 表格
🗋 整体临界安全性	🕒 全部显示	💷 墙体剪力	▶ 地表沉降	」 剪力承载:	と 📄 場体抗態承載力	Ⅰ 4,1 总竖向应力	🎙 墙上超载	📙 墙上水压力	σ _{∎T} Total soil	🖬 水头	<u>。</u> 总竖向应力	ENV局部包络	$\tau_{\rm f}$ Shear strength	图表
₫ 整体安全性等值的	€ 其他・	🚂 壞体轴力	<b>R</b> 支撑反力	组合承载	比又支撑结构承载出	化 有效竖向应力	🧏 地震压力	🖁 水力梯度		🖬 等水头线	🔐 竖向有效应力	🔶 全局包絡	Hide wall elements	
稳定性 -	安全	墙	和支撑		承载比		作用于墙上的	压力		土体	应力-等值线	选项	其他	图表

### 图 2.10.1 结果菜单

该菜单列出了一系列结果,这些结果可以按照视图显示也可以按照表格形式显示。当分 析完成之后,可以输出这些结果。

图标	描述
TOE IFS	嵌固安全系数
	整体稳定性安全系数
	整体安全系数等值线
<b></b>	条块稳定性结果
<b>U</b>	显示全部(当保存了中间滑移面)
其他• 上,墙体轴力 汉支撑反力	显示条间力和其他力:
	最后一个选项显示临界滑裂面,用以从自动
✓ 显示土条法向反力	搜索方法确定 Ka 和 Kp 值。
仅显示选中土条	
■ 显示反作用力値	
Automatic Ka-Kp search surfaces	
Show auto Ka-Kp search	
e	墙体弯矩
Ē	墙体剪力
	墙体轴力
<b>ارت</b>	墙体水位位移
<b>`</b> !·	地表沉降
R	支撑反力
L	组合承载力比(弯矩和轴力组合检查)
7	弯矩承载比=计算得到弯矩/墙体弯矩设计承
E .	载力<=1 是合理的
	剪力承载比=计算得到剪力/墙体剪力设计承

	载力<=1.0 是合理的
*0	支撑结构承载比
*K	
E	墙体抗弯承载力
33	
Ē	墙体剪力承载力
0 _{HE}	有效土压力
avi	总竖向应力
o _{ve} ∶	有效竖向应力
4	墙身净总土压力
-	墙身上超载
4-	
	地震压力
U	净水压力
	墙上水压力
M	水力梯度
Max	最小-最大值
EHV	局部结果包络:当前设计断面结果包络
•	全部结果包络: 所有链接断面结果包络
· · · · · · · · · · · · · · · · · · ·	结果表格:弹出计算结果表格
	水压力云图(当执行流网分析后)
H	水头云图(当执行流网分析后)
	なより体(ツサケボロハギビ)
<b>H</b>	寺水头线(ヨ执行派网分析后)
	· · · · · · · · · · · · · · · · · · ·
F.S	关油女主系数(当执行流网分析后)
	白原向应力三图(当地行流网公拆后)
<u>a</u> vi	芯茎问应力云图( <b>当执</b> 行机两方价后)
	有效坚向应力 云图 (当执行流网分析后)
ove	有双弦问应力公司(当我们犯两方们用)
	项目诰价
\$	
	显示弹塑性分析的剪切强度
$\tau_{F}$ Shear strength	
	隐藏墙体单元结果(只显示主墙计算结果)
Hide wall elements	

单击表格选项可以以表格形式显示计算结果。

### 2.11 报告菜单

稳定性+ 设计 结果 报告 一般 分析 地震 边坡 视图 优化 帮助 ster. à à 报告·选项 Show calculations 计算警告 计算数据汇总(全部设计断面) 计算数据汇总(当前设计断面) 当前阶段(屏幕显示) 计算过程文件 for stage 打印-报告 汇总报告预览 打印 临时文件 图 2.11.1 报告菜单 R 报告·选项 Show calculations 计 for stage GeneralReport QuickReport QuickReportAndSlope StageGraphsOnly temp_1 temp_2 Typical 图 2.11.2 报告-选项下拉菜单 列表内容:

这个菜单中可以选择以 PDF 或 WORD 格式查看报告以及计算汇总表。

选项:	创建快速报告					
选项:	创建快速报告并包括边坡稳定性					
选项:	创建只有阶段图表报告					
选项:	创建典型报告					
选项:使用保存的模板						

**报告-打印**:单击 图标,弹出报告管理窗口。在报告管理器对话框中,可以选择报告中包含的计算内容和相关结果,以及导出的文件类型。

R



图 2.11.3 报告管理器窗口



■ **显示计算阶段结果:** 单击 for stage 该选项,打开 XML 文件,包含当前阶段执行 的所有计算结果。



■ **计算警告**:单击^{计算警告}该选项,弹出计算警告对话框。执行的计算过程中生成的 一般警告。

分析警告	
1. 视图树 2. 表格视图	
	A. 警告信息
0: Number of wall elements(1st Wall)	索引:
- 0 1: Number of wall elements (Right Wall)	设计断面:
	阶段编号:
	唐編号・
	B 数生描述
	* 查目调处
🕕 🕕 10: Possible unsafe apparent pressure diagr	-C. 操作建议
🚽 🕘 11: Possible unsafe apparent pressure diagr	
- 🔁 13: Wall Embedment FS (1st wall), Stage: 5	
🚽 🚽 14: Wall Embedment FS (1st wall), Stage: 5	
🚽 😌 15: Wall Embedment FS (1st wall), Stage: 5	- J. 自則損
- 😌 16: Wall Embedment FS (Right wall), Stage:	
- 17: Wall Embedment FS (Right wall), Stage:	
- 9 18: Wall Embedment FS (Right wall), Stage: -	F 推芳值
19: Wall Embedment FS (Kight wall), Stage:	*· 1E1+1E
21: Wall Embedment FS (Kight wall), Stage: -	
采用推荐操作	
	确定取消

图 2.11.4 计算警告窗口

■ **所有计算断面计算汇总表-当前计算断面:**单击^{计算数属C总(全部设计断面)}该选项后,弹出计 算汇总表。对话框中显示了每一个设计断面以及所有断面的计算结果。选择一个设计断

选择墙单元报告。

🇱 分析及校核汇总								l		
全部设计断面	扩展汇总									
二           に急扩展视图           设计断面计算数据汇总           汇总 - 关键项		计算结果	墙体水平 位移 (cm)	地表沉 译 (cm)	墙体弯矩 (kaY-m/m)	墙体弯矩 (kǎr-m)	墙体剪力 (kǎ/m)	墙体剪力	(ka)	墙体组合承载比
支撑结果	Base model	Analysis did	5.45	NaN	201.38	61.42	109.21	33.31		0.225
墙体计算结果										
最大弯矩vs阶段										
最大剪力vs阶段										
最大支撑力F vs阶段										
一个设计断面										
打开图表										
Warnings (25)										
Building Damage										
3D Frames (strut -wales etc)	•									Þ
Generate report						墙单元报告	复制	長格数据		退出

图 2.11.5 分析及校核汇总

F

■ **当前阶段(屏幕)**: 单击 计算数 ( ) 前设计 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) 前 ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( ) n ( )

■ **弹塑性地基梁数据-结果**:单击该选项,创建 TXT 文件,包含弹塑性地基梁分析中 模型的输入和输出数据。

■ **计算过程文件:** 单击该选项, 创建 TXT 文件, 包含分析中计算过程文件。

### 2.12 视图菜单





如,建筑物,基础荷载等)的位置。

### 2.13 优化菜单

<b>\$}20</b> —£	g 分析	地震 边坡	稳定性+	设计 结果 报告	吉 视图	优化	帮助	
7	ALL	STR	STR	GEØ		计算项目费用	\$	
重新设计选项	Optimize	自动设计支撑(STR)	自动设计墙	自动设计锚杆锚固段长	實(GEO)		费用选项 估价	(不包含墙的分析)
L	esign Section							
选	顷	结构优化	5	岩土丄程优化			费用选项	
	图 2.13.1 优化菜单							
■ <u>j</u>	重新设计	<b>选项:</b> 单击 ^重	新设计选项设	亥选项,弹出结	构重新	设计优化	达项对话	5框。可以定
义墙	和支撑的	重新设计选项	o					

Structura	l redesig	gn-optin	nazation	option	IS	×
墙体	锚杆	内支撑	板			
钢桩-排	 粧ー板桩	7				
<u></u> вид	加D+ 5	2		瑊D-	5	
钢板桩	选项					
🔳 重新	设计的钢	羽板桩须来	R自同—#	司造商		
混凝土;	构件 (地	下连续墙	i, 混凝土;	桩等)——		
			最小钢筋	阮寸		*
			最大钢筋	<b>祝</b> 寸		•
🔽 应用于	所有设计	┼断面		确定		取消

图 2.13.2 结构重新设计选项-墙体

墙体标签中有如下选项:

选项:截面优化范围,在初始截面基础上增大,减小截面尺寸。
定义最大增量(D+)和最小增量(D-),如果截面优化范围选项选中。
钢板桩选项:重新设计的钢板桩必须来自同一个制造商。
混凝土构件(地下连续墙,钢筋混凝土桩等)最小钢筋尺寸和最大钢筋尺寸。

Structural redesign-optimazation options								
墙体 锚杆	内支撑	板						
重新设计锚杆长度选项 用于重新设计锚杆锚固段长度								
Lmax 18	} m							
Lmin 4	m							
DL 0.	5 ^m							
▶ 应用于所有	设计断面		确定	取消	¥			

图 2.13.3 构重新设计选项-锚杆

锚杆标签中有如下选项:

定义锚杆嵌固长度最长长度 Lmax
定义锚杆嵌固长度最短长度 Lmin
DL=长度优化增量

S	tructural	redesign	n-optim	nazation	opti	ons	×
	墙体 🕴	山田 []	为支撑	板			
	重新设	计截面库	的截面月	रज			
	重设数据	库截面高	度				
	加口	1+ 4		1	或 D-	4	
	钢管直径	和尺寸的	优化范围	韦			
	DPma	<b>x</b> 90		I	)Pmin	20	
				管径增	俚DR	2	
	Tp_ms	ux 4		TH	_min	1	
				壁厚增重	₿DT	0.25	
5	☑ 应用于	所有设计	断面		确定		取消

图 2.13.4 设计选项-内支撑

支撑标签中有如下选项:

选项:重新设计截面高度尺寸							
定义最大增量(D+)和最小增量(D-),如果重新设计截面高度尺寸选项选中。							
定义管桩直径最大值(DPmax)和最小值(DPmin),及增量。							
定义管壁的最大值(TPmax)和最小值(TPmin)及增量。							
Structural redesign-optimazation options         道体 猫杆 内支援 板         板厚设计         最小钢筋尺寸         最大钢筋尺寸         量大钢筋尺寸							
图 2 13 5 设计选项-板							
板标签有如下洗项:							
板中钢筋最小尺寸和最大尺寸							
■ 自动设计一个设计断面:计算完成后,单击Design Section 该选项,程序将对模型中所有							
支撑和墙运行自动结构优化。							
■ <b>自动设计支撑</b> :计算完成后,单击 <b>□动设计支撑(STR)</b> 该选项,再选择要优化的支撑,程 序将对选中支撑自动结构优化。							
■ 自动设计墙体:计算完成后,单击 ^{国动设计} 该选项,再选择要优化的支撑,程序将 对选中的墙体自动优化。							

■ **自动设计锚杆嵌固段长度**:计算完成后,单击 **国动设计锚杆嵌固段长度**(GEO) 该选项,再选择要 优化的嵌固段,程序将对选中的锚杆嵌固段长度自动优化。 ■ **造价选项:**造价选项在**造价预算**模块中可以使用。

## 2.14 帮助菜单

▲ 一般 分	術 地震	边坡	稳定性+	设计	结果	报告	视图	优化	帮助
新功能 帮助手册 技术文	料 だ だ た だ 件 来 理 论 手 和 手 册	册文件夹	) 关于 E	し.U.L.A (使 用规定) 戦他	极限平衡的	的案例 弹圈	<b>リークス しょう しょうしん しょうしん しょうしん いっかい しょうしん いっかい しょうしん しょうしょう しょうしん しょう しょう しょう しょう しょう しょう しょう しょう しょう しょう</b>	<b>]]</b> (开案例	<b>议</b> 设置 设置
		ß	8 2.14.1	帮助菜单	<u>自</u>				
<ul> <li>新功能:单击^{新功能}该选项,可以查看 DeepEX 新版本的新功能。</li> <li>打开帮助手册:单击^{要助手册}该选项,打开软件帮助文件。</li> </ul>									
	8	-	DeepXcav u	iser's manual			×		
	τ <u>μ∃</u> <⊐ Απόκρυψη Πίσω	🞒 Εκτύπωση Ε	ΩΓ <del>ν</del> πιλογές						
	□         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □	τήριο Δναζήτ I: INTRODUCT It DeepXcav (I ware Compatibil port & Technica User License A st is new! vating the softw tivating the net 2: USING Deep 3: DATA ENTR' 4: MODIFYING	mon ION TO D leep Exca ty & Instal I Assistanci greement are work licen Xcav Y MODELS	DI	EEPEX	AL	<		
				DeepEX softw	/are program (	Version 2014	L)		
	<		>	٢		>	Ŷ		
图 2.14.2 用户手册									
■ <b>手册:</b> 单击 ^{技术文档文件夹 理论手册文件夹} 打开技术文档文件夹和打开理论手册文件夹,将 打开对应的文件夹。									
<b>- ++ /L</b> ×	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	☑ L.A(使	. 그 그며 /+-	त्त्र भव त्ये					
■ <b>央他</b> : 単 以及了解当前	- 大臣: 中田 大百姓之子 大百姓 医用规定,以自大员可以直有 DeepEX 使用来款 以及了解当前版本信息。					用余款			



■ **设置**: 单击 设置 设置选项, 弹出默认设置对话框。

一般标签: 定义默认单位名称,公司,设计人员姓名和自动保存路径。保存文件到默认路径 选项将保存的临时过程文件保存在.deep 文件保存的文件夹中。

· 全 默认设置	
A. 一般 字体/查看 土/属性 设计 非线性	
一般 公司名称 My Company	
工程师 Engineer	重设当前项
THE Grack	日上柱师
语言 Turkish	
DEEPEXCAVATION	选择图片
单位 (力,长度,位移)	
○ 英制单位(kips, ft, inches)	
◎ 米制单位(keN, m, cm)	
○ 米制单位 (M, m, mm)	
◯ 工程度量单位(Tons, m, cm)	
◯ 工程度單单位 (kgf, m, cm)	
── 国际单位制(ktN, m, m)	
工作目录	
🥅 保存文件至默认路径	
自动保存	
□ 自动保存项目文件	
Save file every (min) 5	
将当前项目设为默认 确定	取消

图 2.14.3 默认设置-一般

字体/视图标签: 定义字体和其他视图选项。

▲默认设置     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □
A. 一般 字体/查看 土/属性 设计 非线性
字体
Regular Size Calibri 8.25 * 选择字体
小号字体 7 🔹
大号字体 10         加粗
视图选项
□ 显示坐标轴
☑ 显示土体信息
☑ 在模型左侧显示土层
☑ 在墙旁边显示 Ka 和 Kp 的值
☑ 在模型上显示假定表格
在模型选项中查看结果
Show Moment and shear diagrams as Shaded graphs -
Show Pressure diagrams as Fill and arrows
Shar Cambo as Laft and might of malls
Show oraphs as Left and right of walls
计算数据汇总
☑ 在计算最后显示计算结果汇总
将当前项目设为默认 确定 取消

图 2.14.4 默认设置-字体/视图查看

视图标签包括以下选项:

- 显示坐标轴
- 显示土体属性信息
- 在模型左侧显示土层
- 靠近墙显示 Ka 和 Kp 值
- 模型中显示假设表

也可以定义一些结果显示方式的查看结果选项。

▶ 土体/属性标签: 定义钢材构件标准(EUR 或 US)和是否读取构件标准数据库。

处 默认设置	23
A. 一般 字体/查看 土/属性 设计 非线性	
钢构件 - 数据库	
Steel Members European Members -	
☑ 在数据库中读取钢构件	
格当前面日设为 <b>胜</b> 讨 路合 西沙	
「「「日前小川日はつぶからい」「明定」「取用	

图 2.14.5 默认设置-土/属性

▶ 设计标签: 定义钢材和混凝土构件结构设计使用的默认规范。

▶ 默认设置 X				
A. 一般 字体/查看 土/属性 设计 非线性				
选择结构规范设置				
CO 规范选项 ~				
钢结构设计规范				
Steel-Design: EC3 2005-CEN				
混凝土设计规范				
Concrete-Design: EC2-2004				
将当前项目设为默认 确定 取消				

图 2.14.6 默认设置-设计

▶ 非线性标签:定义非线性分析默认文件夹位置。建议不要修改初始设置。

▲ 默认设置	23
A. 一般 字体/查看 土/属性 设计 非线性	
非线性分析选项	
wgen.exe, ppara.exe, Pmain.exe文件位置	
C:\Program Files (x86)\DeepEX2017\NLEngine\	
永久的文件保存位置	
重设默认位置	
将当前项目设为默认 确定 取消	

图 2.14.7 默认设置-非线性



■ 案例:单击极限平衡法案例,弹塑性地基梁案例或打开案例 将打开对应的文件夹。

# 第三章:数据输入

### 3.1 数据输入:一般

DeepEX 是一款用户界面友好,功能强大的软件。在软件中创建一个基坑开挖模型的步骤如下:

- 1) 指定全局坐标
- 2) 指定土类和属性
- 3) 指定土层
- 4) 创建水位线
- 5) 指定挡墙系统(排桩,钢板桩,咬合桩,搭接桩,地下连续墙,型钢混凝土墙等)
- 6) 创建支撑构件数据库(锚杆,支撑或混凝土板)
- 7) 添加阶段并绘制新的支撑
- 8) 修改阶段标高
- 9) 分析项目

本章描述设计人员创建基坑开挖模型应该输入哪些数据内容。

### 3.2 设计规范

DeepEX 包括所有欧洲和 AASHTO LRFD 荷载规范。在**分析**菜单中选择**设计方法** 

Approach: Service

**3.2.1**)。单击"单一"选项,可以选择包括模型中规范的单一荷载情况下的系数(图 3.2.1)。单击"多个"选项,可以选择生成规范的所有荷载情况(3.2.2)。单击"多个"选项,根据所选规范程序将自动添加规范中每种荷载组合情况下的设计断面。

自	ê—- 多个 · · · · · · · · · · · · · · · · · ·					
	没有					
	选择规范标准					
0	EUR. 2007 - DA1/1					
0	EUR. 2007 - DA1/2					
	DM08 ITA: APP1-A					
	DM08 ITA: APP1-B					
	DM08 ITA: EQK					
DM08 ITA: EQK-STR						
	自定义方法					
当前规范设置						
图 3.2.1 单一荷载规范						



图 3.2.2 多个荷载规范

下表列出了主要的荷载规范:

规范	国家
DM 08	意大利
BS EN-1997-1 DA1	英国
DIN-1054	德国
XP94	法国
Eurocode 7 Greece	希腊
AASHTO LRFD 5 th	美国
Eurocode 7	欧洲通用
PEN DOT AASHTO (2012)	美国
CALTRANS LRFD	美国
中国荷载组合	中国

选择"单一"选项>>标准规范,弹出计算选项对话框。在对话框中可以定义设计规范 并指定当前设计断面中使用的荷载情况。

计算选项 for Both Walls	x
Kp 被动土压力法	
◎ 不使用规范	
◎ 使用一本规范	
设计规范	
Default	-
- 应用修改士	
🔘 仅适用于当前阶段 (5)	
◎ 全部阶段	
○从阶段 1 至 5	
确定取消	

图 3.2.3 单一荷载工况对话框

单击选择生成规范的所有荷载情况"多个"选项(例如,所有 AASHTO LRFD 情况), 程序会自动创建新的设计断面,可以查看每种荷载情况下的组合系数。同时,弹出设计断面 岩土规范汇总(图 3.2.4)。在该对话框中,可以手动定义荷载组合。

设计断面岩土规范汇总         □         又           设计断面         □         又           设计断面         □         □         又						
	设计新面	阶段	设计方法	设计方法工况	荷载组合	
15	0: Base model	All Stages	Service Design	Service		系数
	1: 0: EC7, 2007: DA-1	All Stages	EC7, 2007	DA-1, Comb. 1: A1 + M	Seismic multiplier	1
	2: 0: EC7, 2007: DA-1	All Stages	EC7, 2007	DA-1, Comb. 2: A2 + M	Variable loads	1
	3: 0: EC7, 2007: DA-2	All Stages	EC7, 2007	DA-2: A1 + M1 + R2	Permanent loads	1
	4: 0: EC7, 2007: DA-3	All Stages	EC7, 2007	DA-3: (A1* or A2+) +	Temporary anchors	1 🗉
	5: 0: EC7, 2007: EQU:	All Stages	EC7, 2007	EQU: M2 + R1	Permanent anchors	1
					tan(friction angle)	1
					Eff. cohesion c'	1
					Shear strength Su	1
					Earth unfavorable	1
					Earth favorable	1
					Water unfavorable	1
					Water favorable	1
					HYDraulic	1
					HYDraulic favorable	1 -
	川市田坝茶市建築				< <u> </u>	•
MPJ用規氾甲述律 Gase description: STR case 1 for Eurocode 行, 1997)						
	荷载于况			应用所选规范设置		
	1/34%12/0				ļ.	
					78会	=
					1(H),Z	=4X/FI

图 3.2.4 多个荷载工况下设计断面岩土规范汇总对话框

单击一些选项(例如,美国规范中混凝土和钢材设计使用欧洲标准)会要求确认改变这些标准。

地震乘子	地震荷载系数
可变荷载系数	可变荷载的荷载系数(比如,交通荷载)
永久荷载系数	永久荷载的荷载系数
临时锚杆系数	临时锚杆抗力分项系数(典型设计寿命<=2年)
永久锚杆系数	永久锚杆抗力分项系数
摩擦角 tan 值	土摩擦角 tan 值系数
有效粘聚力系数	有效粘聚力系数
抗剪强度系数	不排水抗剪强度分项系数
有利土压力系数	土压力分项系数(抗力侧)
不利土压力系数	土压力分项系数(驱动侧)
有利水压力系数	水压力分项系数(抗力侧)
不利水压力系数	水压力分项系数(驱动侧)
有利流土系数	流土稳定性验算分项系数
不利流土系数	流土稳定性验算分项系数
有利突涌系数	突涌稳定性验算分项系数
不利突涌系数	突涌稳定性验算分项系数
墙体结构安全系数	墙体极限承载力安全系数
土钉粘结力 qs 系数	土钉极限粘结强度推定值分项系数(查表法)
土钉粘结力 qs(试验)系数	土钉极限粘结强度实际原位试验值分项系数
旁压试验 PL 系数	旁压试验压力限值系数
土钉摩擦角 tan 值系数	土钉摩擦角系数
土钉体有效粘聚力系数	该参数用在被土钉包围的土体中
土钉体不排水抗剪强度系数	该参数用在被土钉包围的土体中

下表中列举了设计方法中包含的荷载组合系数:

### 下表列举了自定义组合系数:

选项: 定义是否为正常	选项: 混凝土裂缝的正常使用校核
使用组合(SLS)	
F (tan (fr) )	摩擦角 tan 值系数
F (c')	有效粘聚力系数
F (Su)	剪切强度系数
F (wall)	墙体承载力整体安全系数
F (temp load)	活荷载系数
F (perm load)	恒载系数
F (temp sup.)	临时支撑系数
F (perm sup.)	永久支撑系数
Fg (dstab)	不稳定重力荷载系数
Fg (stab)	稳定重力荷载系数
F(Earth Res)	土压力抗力系数,土压力除以该系数。
F(Earth Drive)	主动侧土压力系数,土压力除以该系数。
F(Water Drive)	主动侧水压力系数
F(Water Res)	被动侧水压力系数
FHyd (stab)	流土稳定系数(流土稳定计算)

流土失稳系数 FHyd	流土失稳系数(流土稳定计算)
(dStab)	
使用乘数选项	选择该选项,则初始非线性分析用F(主动土压力系数)进行标准
	化处理。然后运行非线性分析,计算结果由F(主动土压力系数)
	进行放大,以得到墙的极限设计弯矩/剪力,以及支撑反力。
使用 F(墙)选项	激活 F(墙)
使用自定义 qskin 安全	使用自定义锚杆极限粘结抗力安全系数
系数选项	
锚杆 qskin 系数	锚杆极限粘结抗力分项系数
土钉 qskin 系数	土钉极限粘结抗力分项系数
旁压试验 PL 系数 FS	旁压试验 PL 系数: 土钉旁压试验的压力限值系数
PL(土钉)	
土钉摩擦角 tan 值系数	土钉土体的土钉摩擦角 tan 值系数
F(Fr 土钉体)	
土钉体有效粘聚力系	土钉体的有效粘聚力系数
数 F(c' 土钉体)	
F(Su 土钉体)	土钉体的不排水抗剪强度系数
使用 FS_STR_Nails	激活土钉结构安全系数
FSstrNail	土钉结构安全系数
最后除以 Fpassive	选项:墙的基本分析完成后,再单独校核墙体嵌固 GEO 安全性。
	因此,欧洲7规范中STR和GEO校核是分开进行的。
使用土钉面层安全系	激活土钉面层结构安全系数
数	

## 3.3 数据输入:项目信息



单击项目信息^{项目信息}选项,弹出项目信息窗口。对话框内可以指定项目名称,文件编 号和设计人员姓名等。

🚥 项目信息		23
项目信息		
项目名称	My Project	
文件编号	1	
编制	Engineer	
附加说明		
Deep Excavation Pr	oject	
	福宁即消	

图 3.3.1 项目信息窗口

### 3.4 数据输入: 土体数据

单击一般标签>>编辑土类图标,弹出土体类型对话框。可以创建土类并定义属性。首先选择添加土类或者从已有的土类中选择一个并修改它的属性(图 3.4.1)。

👯 土的类型	8 <b>- x</b>
土体类型	1. 名称及基本土体类型
F	名称 『 颜色
01	Hit Fill
SI	
GT	
Rock	Sand CPT, Ec)
	3. 稻工排水:"不排水行入口并见理论于册】
	A. 一般 C. 弹塑性 D. 粘结强度 B. 高级
	4.重度
	$\gamma$ 19.625 kN/m3 $\rangle$ $\gamma$ day 18.84 kN/m3 $\gamma$ = 9.625
	5. 强度容额和油稻化。 Duried stars stars stars
	brained scrength properties
	$c^{\circ}0$ kPa $\rangle$ $\phi$ 30 $\circ$ $\rangle$
	Peak - constant vol. (for estimation)
	₫ , Omitted °
	⊕ peak' Omitted ° >
\	v 0.35
200	6. 渗透性
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
5001	Kx 5. 55555555 m/sec / KZ 5. 55555555 m/sec /
删除	8. 静止土压力系数
	<b>KONC 0.5 COCR 0.5</b> $K_0 = K_0 NC * (0 CR)^{\circ} p CR$
粘贴	
Clone	
」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	□ 1末1f±199,1面件 确定 取消

#### 图 3.4.1 土体类型窗口-添加土类

可以改变土体名称,颜色和土类等基本信息。已经定义的土类有砂土,黏土,粉土和岩石。如果是黏土,可以选择排水或不排水。在这个标签以下是,土体一般属性参数。基本参数如下表:

符号	描述
γt	土饱和重度(水位线以下)
γ dry	土干重度(水位线以上)
C'	有效粘聚力
Su	不排水抗剪强度(当黏土选择为不排水时)在非线性分析中该值作为不排水强度
	的上限值。
V	泊松比(用于弹性理论计算荷载)
ф'	有效内摩擦角
Φcv'	黏土非线性分析中使用的恒定体积有效内摩擦角
Φpeak'	黏土非线性分析中峰值有效内摩擦角
Kx	土水平方向渗透系数
Kz	土竖直方向渗透系数

K0NC	正常固结土静山	上土压力系数
nOCR	计算K0的指数	$K0=K0NC* ((OCR) \wedge (nOCR))$
	★ 土的类型          土体类型         01         02         SI         Clay         GT         Kock	1. 各称及基本土体类型 名称 『
	▶ 打开数据库	□ 保存到数据库 确定 取消

图 3.4.2 土体基本信息

单击土类标签右边的显示试验数据,将显示根据原位试验预测土体主要材料参数工具。 包括标准贯入试验,静力触探试验和旁压试验。

禁 土的类型 土体类型	1. 名称汉基本主体类型 名称 F 颜色	の また の の 、 の の の の の の の の の の の の の の の の
012 S1 CLay GT Rock	描述 Fill 2. 土体类型·行为 Sand	・ 7+ 年20 (Junearsta 1997 20-708 Ave. N 0 N60 Onitted シ 落種改革n= 85 x
- - 	3. 粘土排水-不排水行为(详见理论手册) ○ 不排水 ● 排水	DR Onitted % >> 2. 试样原位应力和塑性指数
	4. $\underline{\mathfrak{sty}}_{t}$ $\underline{\mathfrak{sty}}$	σ _V Unitted kPa PlOnitted σ _V Onitted kPa D ₅₀ Onitted nn
	5. 健康参数和GHR化 Drained strength properties C'0 kPa > ゆ 30 ° >	3. 静力触探数据
	Peak - constant vol. (for estimation) $\Phi_{CV}$ Onitted $\circ$	Qshaft Onitted 12% Qtip Onitted 12% Cone Factor N 15
添加	v0.35 > ↓ peak (milted ) > ↓	4. 旁压试验 P _/ Omitted MPa >>
間称	Kx 9.99999999 m/sec         Kz 9.999999999 m/sec           8. 静止土压力系数         NOCR 0.5	
粘贴 Clone		
▶ 打开数据库	■ 保存到数据库	确定 取消

图 3.4.3 显示实验数据窗口-试验数据

禁土的类型 土体类型	1. 名称及基本土体类型	inother SPT R	stimator 2755	11.0h	h 24		8 <b>x</b>
01 02 S1 Clay GT Rock	名称     序     原色       描述     Fill     2. 土体类型・行为       Sand     ●       クートとない     夏示试验数据(SPT. CPT. Ele)	Nspt 0	10 20	30	40	50 60	
		17 Ø	18 19	20	21	22 23	V
	4. 重度 ア t 19.625 kN/m3	20 €' ↓	30	40	50	60	V
	Drained strength properties c'0 kPa > φ 30 ° > Peak - constant vol. (for estimation)	0 Su 🖓	25	50	75	100	V
	⊕ _{CV} Omitted ° →     ↔ peak Omitted ° →	0 「「弹性 重要提示:	100 模量	200	300	400	
添加	6. 渗透性 Kx 9.999999995 m/sec 〉 Kz 9.999999995 m/sec 〉	使用极限侧摩( 为此, 需要在箱 压应力进行平:	狙力计算锚杆承载; 許设置中选择使用 均或者使用在在锚机	り. 土的粘结强ೂ ∓截面选项的	度选项,否则程序 )岩土页面中定义	\$将对水平和竖 《的粘结应力	直围
	8. 穆止土压力系数 KoNC 0.5 > nOCR 0.5 Ko = KoNC * (DCR) [*] nOCR						
Clone							
▶ 打开数据库	■ 保存到數据库				确定		取消

图 3.4.4 显示实验数据窗口-SPT 估计

在土体主要材料参数后边有一个">"符号。单击该符号将显示估计该参数的公式,这 些公式取自公开发表的刊物。

初始状态下 B.推力标签是隐藏的。只有在 Ka、Kp 主选择窗口(分析菜单>>推力选项>> 自定义 Ka 和 Kp)中选择自定义 Ka 和 Kp 时才会出现。在该标签中,可以定义 Ka 和 Kp 计 算方法。Ka 可以根据郎肯公式计算,或者根据经验图表估算。同样,Kp 也可以根据郎肯公 式计算,或者根据经验图表估算。除了模拟特殊情况,一般建议初始 Ka 和 Kp 使用郎肯公 式。

A. 一般 B. 推力 C. 弹塑性 D. 粘结强度 E. 高级	
重罟斫有的Ka Ka为郎告十压力系数	
Soil Model Spring Persmeters	
Ka 0.33333333 >	
Кр 3	

#### 图 3.4.5 推力窗口 Ka 和 Kp 计算

C. 弹塑性定义每种土类的弹性行为。弹性模型可以选择为线性弹性-理想塑性,指数或 地基反力模量方法(分析方法为非线性分析或极限平衡法和分线性分析)。有工具帮助根据 其它参数估计加载或卸载模量。一般情况下,土体卸载模量是加载模量的三倍(或更多)。

🞇 土的类型	<u>ଥ</u> ୍ୟ 😽
土体类型	1. 名称及基本土体类型
F	名称 『 颜色
01	+#::+ Fill
S1	加企 2 十休米刑-行为
Clay GT	5. 工作关金 []/5 月子试验教报/SPT
Rock	Sand CPT, EC)
	3. 粘土排水 小排水行为 (年见理论手册)
	○ 小排水 ◎ 排水
	A. 一般 B. 推力 C. 弹塑性 D. 粘结强度 E. 高级
	10. 土的本构和行为
	Elastic-Plastic (Linear Load-Reload)
	Subgrade-modulus
	HS-Small (approximated procedure)
	10.1川埠灯9甲1主参会》
当修改士摩擦系数时	Eload 14370 kPa
☑ 自动估计Ka-Kp	exp 0.5 Pref 95.8 kPa
	$a_{\rm r}^{0} \rightarrow a_{\rm h}^{1} \rightarrow$
\	10.3 卸载-重加载弹性模里
×#//II	rEur=Eur/Eload 3
信制	
<u>美</u> 啊	$F = F_{vc} [(\alpha, \sigma' + \alpha, \sigma')]^{n}$
冊修余	$L = Lvcl(u_V v_V + u_H v_h)/pref J$
粘贴	
Clone	
▶ 打廾颈据库	<b>福</b> 1末任到刻湖库 确定 取消

#### 图 3.4.6 弹塑性窗口

下表列出了弹性模型的相关参数:

	符号	描述		
弹塑性行为	Evc	初始压缩模量		
	rEur	卸载/加载弹性模量比值(典型 3-5)		
指数行为	Eload	加载弹性模量		
	exp	指数		
	av	竖向应力系数		
	ah	水平向应力系数		
	Pref	参考压力		
	rEur	卸载/加载弹性模量比值(典型 3-5)		
地基模量法	Kvc	地基反力模量		
	rKur	卸载/加载弹性模量比值		

如果模型中创建了锚杆或土钉,需要定义极限粘结强度。

🧱 土的类型	ି ଥି <mark>ଅ</mark>
土体类型	1. 名称及基本土体类型
F	名称 F 颜色
01	100 (100 (100 (100 (100 (100 (100 (100
S1	
Clay GT	
Rock	Sand · · · · · · · · · · · · · · · · · · ·
	3. 粘土排水-不排水行为(详见理论手册)
	○ 不排水 ◎ 排水
	A. 一般 B. 推力 C. 弹塑性 D. 粘结强度 E. 高级
	锚杆极限粘结强度
	q _{akin} 49.7 kPa
	SNULL 极限粘结强度用于计算岩土承载力,必须在支撑页面中选择使用土体粘结强度选项才
	能使该极限粘结强度生效。否则,将会使用每个锚杆在锚杆断面/岩土页面中所定义的
	强度值。
当修功于麻烦妥粉时	
☑ 自动估计Ka-Kp	土钉地基模里
	k 3143 04 1-W/m3
	S STRUCT RAYING
	土钉极限粘结强度
添加	q _{skinu} 33.1 kPa >
	Skill.u
复制	混凝土墙极限粘结强度
	q _{abian} 0 kPa
刪除	
*Lat	
括贝伯	
C1	
CIONE	
📙 打开数据库	□ 保存到数据库 通定 取消

图 3.4.8 锚杆极限粘结强度

下表列出了相关参数:

符号	描述
qskin.u	锚杆极限粘结抗力
ks	计算剪切抗力时使用的地基模量(土钉边坡
	稳定分析中)
qskin.u	土钉极限粘结抗力
qskin.u	混凝土类墙的极限粘结抗力(桩的极限承载
	力计算)

## 3.5 数据输入: 土层

单击一般>>编辑钻孔,弹出土层对话框。在对话框中可以添加土层,删除土层,指定 土层顶标高以及使用的土类。并且,可以定义钻孔在模型视图中的位置。双击模型视图中钻 孔或者双击树型视图中的钻孔也可以打开该对话框。在对话框中可以定义 OCR。每一个独 立的设计断面可以包含不同的钻孔。

	1	
泊力し Reviews 1	1. 珀扎一版信息"坐你	
boring 1	名称 Boring 1	
	坐标 X -20 m Y 0 m	
	x坐标控制站孔在设计断面视图的位置,每一个设计断面使用一个钻孔(地层),每一个设计断面都可 以使用不同的钻孔。	
	SPT Data Option (Applies to Design Section)	
	SPT Record Not assigned	
	CPT Record Option (Applies to Design Section)	
	CPT Record Not assigned  Add edit CPT records	
	2. 土层钻孔-土层标高	
	顶部标高 土体类型 OCR K₀ 编辑	
	▶ 0 F ▼ 1 0.5 Edit	
添加		
冊修余)		
544F4F		
Clone Boring	插入土层 删除土层	

图 3.5.1 土层对话框

进行黏土进行弹塑性分析,因为黏土强度随着 OCR 增加而增加,因此 OCR 值非常重要。

### 3.6 数据输入:水压力

单击分析>>地下水计算方法,可以选择以下几种方法:

- ▶ 静水压力
- ▶ 简化渗流
- ▶ 流网
- ▶ 自定义水压力

密封开挖选项是在坑底设置隔水板阻止水流入坑内。



图 3.6.1 地下水分析列表

选择以上任意一种方法后,会弹出警告提示框,提示是否将该方法应用到所有阶段。点 击是则应用到所有阶段,点击否,则只应用到当前阶段。详细描述见 2.6 节。

### 3.7 数据输入:墙体数据

模型中每一道墙都可以单独定义一种墙截面。每一种墙截面可以应用于任意设计断面任 意一道墙。双击墙体或者双击树型视图中墙体,会弹出编辑墙体数据对话框。在对话框中可 以定义墙体基本属性,例如墙深度,顶标高,墙体坐标和极限平衡法中使用的节点数量。除 此之外,也可以单击一般>>结构截面>>墙截面,弹出编辑墙体属性对话框,在该对话框中 选择和编辑墙体截面数据。



图 3.7.1 墙体数据对话框以一般标签

主-从关系选项控制墙是否与从属节点连接。如果选择了从属节点,则墙节点和从属节 点构成了一个节点对。如果分析>>高级选项中选中允许从属单元产生拉伸裂缝,就可以模 拟墙节点和从属节点的拉伸裂缝。



图 3.7.2 墙体数据对话框-高级标签

对于连续梁建议所有选项都选中。

#### 3.7.1 数据输入:墙截面

<mark>算</mark> 编辑墙体属性	X
· 請酌決型             · 請酌法             · 求型             Steel sheet pile wall                  · 請酌法                 · 請酌法                 · 請酌法                 · 請助品                 · 請助品	2. 在称 ▼all 1 3. 一般截面對類 板桩 AZ 26 4. 尺寸 7. 水平賀選S 0.305 ★ 成力计算究度(开挖面以下) 0.305 本压力计算究度(开挖面以下) 0.305 和 本压力计算究度(开挖面以下) 0.305 和 本压力计算究(开挖面以下) 0.305 和 本压力计算究(于) (开挖面以下) 0.305 和 本压力计算究(于) (开挖面以下) 0.305 和 本 本 本 和 本 和 本 和 本 和 本 和 本 和 本 和 本 和 本 和 本 和 本 和 本 和 本 和 本 和 本 本 本 和 本 和 本 和 本 本 本 和 本 本 本 和 本 本 本 本 本 本 本 本 本 本 本 本 本
1.034         夏劇           一冊除         添加	
☑ 自动更新墙的尺寸	Ⅰ 打开数据库 保存到数据库 确定 取消

设计断面中任意一道墙都可以使用墙体材料数据。

图 3.7.1.1 编辑墙体属性对话框

下表中列出了墙截面对话框中主要参数:

符号	描述
d	墙宽度
S	墙水平间距
被动土压力计算宽度	被动土压力计算宽度
主动土压力计算宽度	主动土压力计算宽度
水压力计算宽度	水压力计算宽度

### 下表列出了软件中包含的各种墙体类型:

选项	描述
	排桩+挡板,排桩材料为H型钢或工字钢。 其它材料参数将自动冻结。
	排桩+挡板,排桩材料为钢筋混凝土。其它材 料参数将自动冻结。
	排桩+挡板,排桩材料为空心钢管。其它材料 参数将自动冻结。
	排桩+挡板,排桩材料为空心钢管+混凝土(管内)。其它材料参数将自动冻结。
	排桩+挡板,排桩材料为槽钢。其它材料参数 将自动冻结。
	排桩+挡板,排桩材料为双拼槽钢。其它材料 参数将自动冻结。
	排桩+挡板,排桩材料为素混凝土。其它材料 参数将自动冻结。

	板桩墙。其它材料参数将自动冻结。
	咬合桩,桩体材料为素混凝土桩+H型钢混凝 土或工字钢。其它材料参数将自动冻结。
	咬合桩,桩体材料为素混凝土桩+钢筋混凝 土。其它材料参数将自动冻结。
M O S A	咬合桩,桩体材料为素混凝土桩+钢管混凝 土。其它材料参数将自动冻结。
	咬合桩,桩体材料为素混凝土。其它材料参 数将自动冻结。
	咬合桩,桩体材料为素混凝土桩+槽钢。其它 材料参数将自动冻结。
	咬合桩,桩体材料为素混凝土桩+双排槽钢。 其它材料参数将自动冻结。
	搭接桩,桩体材料为素混凝土+H型钢或工字 钢。其它材料参数将自动冻结。

	搭接桩,桩体材料才钢筋混凝土。其它材料 参数将自动冻结。
	搭接桩,桩体材料为素混凝土+钢管混凝土。 其它材料参数将自动冻结。
	搭接桩,桩体材料为素混凝土+双排槽钢。其 它材料参数将自动冻结。
	搭接桩,桩体材料为素混凝土。其它材料参 数将自动冻结。
	搭接桩,桩体材料为素混凝土+槽钢。其它材 料参数将自动冻结。
K S X	地下连续墙。其它材料参数将自动冻结。
	T 型截面地下连续墙。其它材料参数将自动 冻结。
	倒 T 型截面地下连续墙。其它材料参数将自 动冻结。
K S X	型钢混凝土,素混凝土+H型钢或工字钢。其 它材料参数将自动冻结。

K S X	型钢混凝土,素混凝土+双排槽钢。其它材料 参数将自动冻结。
	型钢混凝土,素混凝土+钢管混凝土。其它材 料参数将自动冻结。
K S X	型钢混凝土,素混凝土+槽钢。其它材料参数 将自动冻结。
	自定义墙截面。型钢混凝土,双排槽钢。其 它材料参数将自动冻结。
	组合板桩墙,H型钢或工字钢+板桩墙。其它 材料参数将自动冻结。
	组合板桩墙,双排 H 型钢或工字钢+板桩墙。 其它材料参数将自动冻结。
S S S S S S S S S S S S S S S S S S S	组合板桩墙, 空心钢管+板桩墙。其它材料参 数将自动冻结。

单击? 按钮, 弹出土压力计算宽度帮助对话框。该对话框中包含主动侧和被动侧计算宽 度的相关信息。



图 3.7.1.2 主被动土压力和水压力计算宽度

#### 3.7.2: 墙体类型: 排桩

在墙体截面对话框,墙体类型可以选择为排桩。程序包含了所有欧洲和美国标准截面。 在该对话框中可以修改墙体尺寸。

🙀 编辑墙体属性		X
墙截面	A. 墙的类型 E. 挡板 B. 钢梁 F. 显示	
Wall 1	1.类型	2. 名称
	Soldier pile wall with steel I beam	Wall 1
	Evnand 33	3
	排桩加挡板 🔷 🔺	
	The Ca	
	tes tes	S N
		K Z
		4 日寸 5 结构材料
	d	キバリ (1) 密度は 0.6 m
		ASO V Edit
	<u>K</u> → → →	? 水平间距5 0.305 m
		被动土压力计算宽度(开挖面以下) 0.305 ■ >
	O = O	主动士压力计算宽度 (开挖面以下) 0.6 m >
	S N	承压力计算见是(并这叫以下)□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
	K 7	我将国际人等学术权力计算单路动不到十尺力计算单路因为你们就将国际场景化。
		们38国家——1893年1827月14年18日中国27月14年18日9月19月18日日(1993日18年7月14日) 1991日日为(译成季劳)
粘贴	()w $()$	8. 雄信署选项 (70排放口话用于排放和塔塔拉)
复制	$\mathbf{O}$	
anig 🌣	K S X	
		□ 网度增加
添加		
同白地再彩着的尺寸		
		↓ 打井数据库 确定 取消

图 3.7.2.1 排桩一般截面和尺寸

E. 挡板标签,修改挡板属性,例如挡板材料类型,厚度和截面形式以及挡板在墙体上的位置。

A. 墙的类型 E. 挡板	B. 钢梁 F.显示	
1. 选择挡板类型		
◎ 木质挡板	◎ 混凝土材料挡板	🔘 Steel plate lagging
_2.A:木质挡板属性		
	选择木质 ^{5 cm timber lagging}	* 编辑
1	当板厚度 5.001 cm	材料 Construction Timber 🔻
3. 挡板位置		
Center of wall		<b>*</b>
-4. Calculation meth	nod	
California trenchi	ng and shoring manual	*
Bending and shear	calculations	
Simple span bendin	g	*
	-	

图 3.7.2.2 挡板属性

下表中列出了对话框中包含的选项:

参数	描述
选项: 使用木材或混凝土挡板	定义挡板类型,可以定义精确的参数
木材挡板	挡板类型选择为木材后,可以定义木材挡板
	截面
挡板厚度	定义挡板厚度
材料	定义木材属性(选项:建筑木材或普通木材)
混凝土挡板	挡板类型选择为混凝土后,定义混凝土挡板
	截面
拱弧度	定义挡板拱弧度(零度意味着和墙体平行)
挡板位置	定义挡板位置(包括双墙):
	● 桩体侧壁左侧
	● 和桩体侧壁左侧齐平
	● 桩中心平面位置
	● 桩体侧壁右侧
	● 和桩体侧壁左侧齐平
计算方法	挡板计算方法:
	● California 开槽和支撑手册
	● 完全主动土压力
	● 自定义
弯矩和剪力计算	定义弯矩和剪力计算方法:
	● 简支弯曲
	● 中心 50% 压力
	● 自定义
B. 钢梁标签中,可以定义钢梁材料属性或者从数据库中选择标准型号。型钢可以是 H 型钢,工字钢,槽钢(单双)或者圆管(空心或混凝土)。

考虑由于接头的存在会影响钢管强度,降低钢管承载力,因此需要折减截面模数。全焊 缝钢管可能具有理论计算承载力,因此可以不需要激活该选项。

符号	描述
D	高度或直径
А	面积
Ixx	惯性矩强轴
Іуу	惯性矩弱轴
Sxx	弹性截面模数强轴
Syy	弹性截面模数弱轴
rx	惯性半径强轴
ry	惯性半径弱轴
Zxx	塑性截面模数强轴
Zyy	塑性截面模数弱轴
tP	厚度
J	转动惯量
W	理论重量

该标签中的选项如下表:

14.编辑墙体属性		23
- 墙截面	▲ 摘的类型 B. 挡板 B. 钢梁 B. 扇示	
Wall 1	1. 一般-积深黄面	
	達得或者納入載面类型(技enter維完成) 載面 NE 300A ~ 添加載面属性 新面 NE 300A ~ 添加載面属性 新 La 5 x pile ¥	
	2.洋細的洞染載面漏性 D 29.0000 cm A 112.5 cm2 k 4.10000 cm b É 29.9999 cm t f 1.4 cm t v 0.8 cm	
	J. 2. 5. 500 cm     I. X. 1. 1. 5 cm     J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
	3. 排桩和粘土层-被动抗力修正	
粘贴	Ignore passive resistance from cla0hin x Sact (fla	
复制		
删除		
添加		
☑ 自动更新墙的尺寸	▶ 打开数据库 保存到数据库 确定 取消	

图 3.7.2.3 H 型钢截面

无支撑长度 Lb 和开挖面以下无支撑长度系数 Lx 控制墙体承载力屈曲计算。

还有一些其它有用的选项,例如接头的存在考虑钢管承载力折减,混凝土刚度计算的有效性。也可以手动边界截面属性。

🗳 编辑墙体属性		3
墙截面	▲ 撮的类型 E. 挡板 B. 将梁 E.显示	
(xu) 1     (xu)	WALL: CH5290X10 Sx= 595.3 cm3	
☑ 自动更新墙的尺寸	Ⅰ 打开数据库 保存到数据库 确定 取消	

图 3.7.2.4 H 型钢排桩俯视图

🛍 编辑墙体属性		
墙截面	A. 墙的类型 E. 挡板 B. 钢弹 E. 显示	
Wall 1	1. 一般・研究截面 这種或者輸入截面決型(技enter確完成) 截面 CHS250110 ▼ 添加載面属性 双槽初选项 开挖面以下无支撑长度 Lb (开挖 増量) 0.9 ■ 开挖面以下无支撑长度为 x pile ¥	
	Ø 双槽闩 s 3845 m 第3 Lx · · · · · · · · · · · · · · · ·	
	D 29       cm       A 87.96       cm2       k 1       cm       bf 29       cm       tf 1       cm       tf 1       cm         Lxx: 0631.5       cm4       Lyy 0631.5       cm4       J17263.01       cm4       rx: 9.906       cm       tf 1       cm       tf 1       cm         Sxx: 095.3       cm3       Syry 595.3       cm3       Cw1       cm6       ry 9.906       cm       tf 1       tf 1       cm       tf 1       t	
粘贴           重制           剛除余           添加	3. 接他和MAILE-1003時273回止 □ Ignore passive resistance from cla0hin x Sact (flx手が與循羽梁徹面躍性	
☑ 自动更新墙的尺寸	IT开数据库 保存到数据库 确定 取消	]

图 3.7.2.5 双槽钢截面

### 3.7.3 墙体类型:板桩墙

编辑墙体对话框中,选择墙体类型为板桩墙。可以从板桩墙数据库中选择标准型号。

🖞 编辑墙体属性			X
^後 编辑读 <b>众居住</b> 指載面 【▲111】	A 墙的类型 C. 級板桩 F.显示 1.类型 Steel sheet pile wall #確加挡板 ~ 板桩墙 ~ 吸合桩 ~ 燃た ~ 地下连续墙 ~ 型阳光梁土墙 ~	2. 名称 Wall 1 3. 一般截面就招 板桩 AZ 26	X ALL COUNTRIES 5. 结构材料 研究 ASO · Edit
	maxmu 地下注線描 や 型钢混凝土描 ら定义 ・ 組合板推描 ・ Box sheet piles ・	水平詞距5         0.305         ●           被动土压力计算宽度(开挖面以下)         0.305         ●         ●           主动土压力计算宽度(开挖面以下)         0.305         ●         ●           水压力计算宽度(开挖面以下)         0.305         ●         ●           水压力计算宽度(开挖面以下)         0.305         ●         ●           新压力计算宽度和主动土压力计算宽度用于角以开税置以下作用老细单先上         ●         ●	A50 - Edit
☑ 自动更新墙的尺寸		▶ 打开数据库 保存到数据库	确定取消

图 3.7.3.1 一般截面和尺寸-钢板桩

C. 钢板桩标签中,可以更改钢板桩属性。具体属性选项如下表:

符号	描述
h	高度
А	面积
b	基本长度
tf	翼缘厚度
Ixx	强轴惯性矩
Sxx	强轴弹性截面模量
S	腹板厚度
α	腹板与水平轴夹角

🔋 编辑墙体属性		
墙截面	A. 编的类型 [C. 钢板桩] P. 显示	
Wall 1	1.截面设计(从数据库选择)-	
	截面 AZ 26	
	2. 钢板桩属性	
	h 42.6969999 cm A 197.91 cm2/m Interlock type DH Select Interlock type "	
	b 82.992 cn tf 1.3 cn	
	Ixx 55511.2 cm4/m s 1.219 cm	
	Sxx 2600 cm3/m α 58.5 °	
	升挖面以下无支撑长度Lix系数 5	
	MARN/FACTURER: Arcelor, Luxembourg, SHAFE: Z HDT/COLD BOLLED: HR	
粘贴		
复制		
删除		
添加		
🔽 自动更新墙的尺寸	IF 打开数据库 IF 打开数据库 IF 行手数据库 IF 前定 IF 前定 IF 前定 IF 前定	

图 3.7.3.2 钢板桩材料属性

🔋 编辑墙体属性		3
墙截面	A 墙的类型 C. 钢板桩 图显示	
¥411 1	WALL: AZ 26 5x= 2600 cm3 0.63	
✓ 自动更新墙的尺寸	▶ 打开数据库 ● 打开数据库 ● 報告 <td></td>	

图 3.7.3.3 钢板桩俯视图显示

当模型中墙体类型为钢板桩墙时,那么在设计标签中会显示钢板桩腐蚀选项。单击钢板



桩腐蚀^{corrosion}选项,将弹出钢板桩腐蚀对话框。在对话框中可以选择检查结构设计寿命, 以便考虑腐蚀对钢板桩墙的影响。一般在最后一个开挖阶段,添加该阶段。

钢板柱腐蚀选项	-	-	_				×
1. 考虑腐蚀和设计寿命		_			いたの	金石画写初	话扬音
📃 检查设计寿命					后阶段)		29 <b>17</b> 4X
2. 设计寿命							
设计寿命以年为单位	50	Defin	ed corro	sic	on rate:	5	<b>*</b>
3. a 腐蚀速率							
-Ki	溅区损失速率	(作用	立置高)	0.1	007500(	cm/year	
		土层中	腐蚀速率	0.1	003499{	cm/year	
		潮间带	损失速率	0.1	007500(	cm/year	
4. 水位线标高(相对标高	[或绝对标高]						
▲ 水位线使用绝对标品					- RW	深度	
平	均高水位 0.5		m	+	1	m	
1	既水位线 -1.	5	m	-	1	m	
5. 需要的厚度							
推荐	最小厚度 <mark>0.6</mark>	35	cm				
🦳 检查最小截面属性百	'分比 (i.e.	Florid	a DOT 85	%)			
2.0. 要吃人 6.0.							
· 设立阶段							
◎ 所有阶段							
◎ 阶段	Stage 5					_	-
🔘 应用阶段	从阶段	Stage	0				-
	至阶段	Stage	5				-
					72		n 534
					・明定	<u></u> Ц.	

图 3.7.3.4 钢板桩腐蚀选项

包含的选项如下表:

选项:检查设计寿命
定义设计寿命(单位为年)
选择定义腐蚀速率或厚度损耗
定义飞溅区腐蚀速率或厚度损耗
定义土层中腐蚀速率或厚度损耗
定义潮间带腐蚀损耗或厚度损耗
选项:使用水位绝对标高
定义水位标高(平均高水位,低水位,激浪区)
定义推荐最小厚度
选项检查最小截面属性百分比

### 3.7.4 墙体类型:咬合桩和搭接桩

编辑墙体对话框中,选择墙体类型为咬合桩或搭接桩。可以从数据库中选择标准型号。 程序包含了所有欧洲和美国标准截面。

🐉 编辑墙体属性			23
墙截面 4. 墙伯	的类型 B. 钢梁 F.显示		
Wall 1 _1.类	型	2. 名称	
Seca	nt pile wall with steel I beam	Wall 1	
4154	Expand >>	3. 一般歡加数語	
1971 1421			Trim exposed wall face
1021		HE 300A	(drawing only)
「「「「「「「」」「「「」」「「「」」「「」」「「「」」」「「」」「「」」「	合征 ^		
1		- <u>K</u> S X	
w l			
	6.2. 6.2		
*     *	× S N		r (########
	K 7	4. 八小	2. 结构和不住。 词:结晶、混、缩十大材料
T		负援d U.0 m	17380 2628年14375
14		7 水平间距S 1 m	Fo 3ksi T Rdi+
	( <u>el</u> , jel,		No. Contraction of the second
		像幼工压力环界见反(并这国以下)————————————————————————————————————	Unreinforced piles
		主动土压力计算宽度(开挖面以下)	Same as reinforced pil) *
T			
201	$\cap$	水压力可算免疫(用之间实下/	
			钢梁
±		并把国以下极初工压刀计算宽度和王初工压刀计算宽度用于强以并把国以下作用在墙单元工 的土压力(详见手册)	A50 - Edit
*上目上	<del>к ~~ →</del>		
11001 T		<ol><li>Advanced secant pile options (typical in Asia)</li></ol>	
夏制	6 ( 6 )	Unreinforced piles have different size	
删除			
· 沃奈+m		and the musicion of bires	
	<u>K ∾ ≯</u>		
□ 白动再新等的日子			
♥ 田40定利1回目17尺 1		🕞 打廾数据库 🔚 保存到数据库	确定 取消

图 3.7.4.1 一般截面和尺寸-咬合桩

在 B.钢梁标签中,可以修改钢梁材料属性。包含的属性如下表。截面可以是 H 型钢, 工字钢,槽钢(单双)或钢管截面(空心或内含混凝土)。素混凝土桩的截面尺寸可以和加 筋混凝土桩尺寸相同或不同。

🛍 编辑墙体属性	×
墙截面	A. 描的类型 B. 钢梁 F. 显示
(fal 1	1. — 他-研究素面 选择或素的入析面类型(按enter键完成) 截面 H2 300A ▼ 添加載面躍性 用注面以下无支挥长度 Lb (开控 增置) 0.9 ■ 开注面以下无支挥(反 Lk (无 ( T + Z + A + A + A + A + A + A + A + A + A
	Concrete effectiveness (for stifness calculations)  Include cover for stiffness calculation Stiffness Calculations (see theory 25 x  2. i##DiFFR# ingelt D29.0000 cm 4 112.5 cm2 k 4.10000 cm bf29.9999 cm tf 1.4 cm tw 0.8 cm Ixx 18280 cm4 Iyy 5309.991 cm4 J 35.19991 cm4 rx 12.7 cm # x x 12.7 cm Str 1280 cm3 Ser 420 5 cm3 Cw 1200 cm6 rx 7.5 cm 4 x x 1
	Zax 1383 cm3 Zyy 641. 1991 cm3 ¥ 0. 865 kdV/m
粘原佔           夏刺           脚序余           添加	手动编辑码梁截面属性
☑ 自动更新墙的尺寸	Ⅰ 打开数据库 Ⅰ 保存到数据库 0.00 0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000

图 3.7.4.2 编辑墙体属性-钢梁标签

🔋 编辑墙体属性		
墙截面	▲ 遺的类型 B. 钢梁 [E.显示]	
活動(面)  第41] 1   	▲ 埴的決型 8. 研染 『5 显示	
<b>夏制</b> 删除		
☑ 自动更新墙的尺寸	▶ 打开数据库 ↓ 任存到数据库 → 現消	

图 3.7.4.3 H 型钢咬合桩俯视图显示

### 3.7.5 墙体类型: 地下连续墙

编辑墙体对话框中,选择墙体类型为地下连续墙(图3.7.5.1)。在D.混凝土-钢筋标签中,可以更改混凝土和墙体钢筋(图3.7.5.2)。如果选中多种钢筋截面选项,将显示多层钢筋选项(图3.7.5.3)。标签中的选项菜单如下表。图3.7.5.4为F.显示标签中显示的地下连续墙的俯视图。地下连续墙的形式也可以选为T型截面或者倒T型截面地连墙,如图3.7.5.5。

14.编辑墙体属性			X
	A : 節決型 D. 初筋混殺土 F. 显示 1. 类型 Di sphrage vall (slurry vall US) # 椎加挡板 ◇ ▲ 板磁墙 ◇ 吸合症 ◇ ガア在续墙 ◇ 地下在续墙 ◇	2. 名称  ¥all 1 3. 一般截面数据	
		<ul> <li>4. 尺寸</li> <li> <b></b> 宽度 4 0.6 m <b>席</b> 4 0.6 m <b>水平祠至5 1 m</b> •</li></ul>	5.结构材料 钢筋-混凝土材料 钢筋- Grade 60 * Edit 混凝土 Fe 3ksi * Edit
		并挖面以下被助土压力计算宽度和主助土压力计算宽度局子换以并挖面以下作用在缩单先上 的土压力(详见孝贵)	
🔽 自动更新墙的尺寸		🕞 打开数据库	确定取消

图 3.7.5.1 地连墙尺寸

符号	描述
D	墙体厚度
А	面积
В	长度
Ixx	强轴惯性矩
Ν	钢筋数量
Bar#	钢筋型号
Astop	顶层钢筋面积
Asbot	底层钢筋面积
Ctop	左侧保护层厚度(墙壁至最左外侧钢筋中心)
Cbot	右侧保护层厚度(墙壁至最右侧钢筋中心)
sV	剪切钢筋竖向间距
sH	剪切钢筋水平向间距
使用多种钢筋截面形式	选项:墙体多层钢筋
将墙看做板	选项: 仅适用于地下连续墙并且在剪切承载
	力计算时将他们看做板

🐌 编辑墙体属性		X
墙截面		
	A 描記決型 U. 叶的形花工 [ 2.显示 1. 深社 描述而关型 2. 影而天寸 D 60 cm A 6000 cm2 Ixx 1800000 cm4 Recalculate bx 5. 100 cm 3. 纵向时筋 (拉伸 - 压缩) 顶部钥筋 (左側) N 6 Bars ≠ #5 ▼ = AsBot 17.0322 cm2 7.82 cm N 6 Bars ≠ #5 ▼ = AsBot 17.0322 cm2 7.82 cm	Cleft Cright
<ul> <li>粘肌</li> <li>夏申</li> <li>●</li> <li>●<th><ul> <li>4. 抗剪钢筋</li> <li>Bar# ▼ = As 0 cm2 sV 0 cm sH 0 cm</li> <li>螺旋抗剪钢筋 米制单位时钢筋D10是指直径为10mm</li> <li>抗剪承载力计算中将操作为统计算(仅适用于地连阖)</li> </ul></th><th>brav Concrete Section</th></li></ul>	<ul> <li>4. 抗剪钢筋</li> <li>Bar# ▼ = As 0 cm2 sV 0 cm sH 0 cm</li> <li>螺旋抗剪钢筋 米制单位时钢筋D10是指直径为10mm</li> <li>抗剪承载力计算中将操作为统计算(仅适用于地连阖)</li> </ul>	brav Concrete Section
☑ 自动更新墙的尺寸	Ⅰ 打开数据库	确定取消

图 3.7.5.2 混凝土和钢筋属性

A. 编辑培体属性															
墙截面	啬的类型 □.	钢筋混凝土	F.显示 D.2 多	层钢筋选	顷										
Wall 1	长度	左边钢 方 筋   剤	E边钢 筋截面 筋型 AsLeft	左边保 护层厚 度	右边钢 筋	右边钢 筋数重	右边钢 筋截面 面积 AsRight	右边保 护层厚 度	是否使 用瓶 瓶	抗剪钢 筋	抗剪钢 筋截面 ann Ashear	抗剪钢 筋水平 间距Sh	抗剪钢 筋空向 间距Sv	多层	
•	0	<b>#6 🔻 6</b>	17.0	7.62	#6 🔻	6	17.0	17.0		-	0	0	0		
	9	<b>#</b> 6 🔻 6	17.0	7.62	#6 ▼	6	17.0	17.0		-	0	0	0		
星利															
		Ĭ			_	_				_	_				
添加	添加截面		截面												
☑ 自动更新墙的尺寸				13 利	「开数据库		🔒 保ィ	字到数据属	E				确定		<b>D</b>

图 3.5.7.3 多层钢筋选项窗口

下表列出了多层钢筋对话框中的选项:

钢筋长度(从左侧)
左侧钢筋尺寸
左侧钢筋数量
左侧钢筋包含层厚度
右侧钢筋尺寸
右侧钢筋数量
右侧钢筋面积

右侧钢筋保护层厚度
选项:使用抗剪钢筋
剪切钢筋尺寸
剪切钢筋面积
剪切钢筋水平间距
剪切钢筋竖向间距
选项: 使用并编辑多层钢筋



图 3.7.5.4 俯视图显示



图 3.7.5.5 T 型地连墙俯视图

### 3.7.6 墙体类型:型钢混凝土墙

在编辑墙体对话框中,选择墙体类型为咬合桩或搭接桩。可以从数据库中选择标准型号。 程序包含了所有欧洲和美国标准截面。

🛱 编辑墙体属性			×
墙截面	A. 墙的类型 B. 钢梁 F.显示		
Wall 1	1.类型	2. 名称	
	SPTC wall with steel I beam	Wall 1	
	Program J AX	2 的新元教报	
	排柏加挡板 v▲		
	板桩墙 >		
		HE 300A - W	
		* =	
	加压连续倍 ✓	<del>к 3</del> 3	
	刑御法務士信		
	¥ 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,	4. 尺寸	5. 结构材料
		宽度d 0.6 m	钢筋-混凝土材料
	+dan_dai =	★平 <b>浦55</b> 0.305 m	混凝土
	<u>K X</u> X	?	Fe 3ksi • Edit
		被动土压力计算宽度(开挖面以下) 🛛 305 🔤 🖻 📄	
	10.0	主动土压力计算宽度(开挖面以下) 0.305 🐘 >	
	* <u> </u>	水压刀计算宽度(升挖面以下)◎.333	
	K ~~ >		钢梁
		开挖面以下被助土压力计算宽度和主助土压力计算宽度用于操以开挖面以下作用在墙单元上 的土压力(详见手册)	A50 - Edit
*1-11			· (
1929			
夏制	* 2113		
冊修	<del>к ~ ```````````````````````````````````</del>		
添加			
~m/JH			
▶ 自动更新墙的尺寸			TRAN HINK
			NIIL AXII

图 3.7.6.1 一般截面和尺寸-型钢混凝土墙

钢梁属性和选项如图所示。图 3.7.6.2 为 F.显示标签中显示型钢混凝土墙的俯视图。



图 3.7.6.2 型钢混凝土墙俯视图

^{3.7.7} 墙体类型: 自定义

在编辑墙体对话框中,选择墙体类型为自定义(图 3.7.7.1),可以直接定义墙体惯性矩, 墙体厚度,不使用任何已经定义好的墙体类型的墙体顶部和底部释放。图 3.7.7.2 显示了自 定义墙体俯视图。



### 图 3.7.7.1 一般截面数据及尺寸-自定义墙体类型

顶部	截面顶部标高	
材料	截面材料	
Ixx	惯性矩	
底部释放	截面底部释放	
顶部释放	截面顶部释放	
t	截面厚度	



图 3.7.7.2 自定义墙体俯视图

### 3.7.8 墙体类型:组合板桩墙

在编辑墙体对话框中,选择墙体类型为组合板桩墙。可以从数据库中选择标准型号,也可以自定义属性(图 3.7.8.1)。在组合板桩墙标签中选择的截面属性会自动赋值给钢板桩和钢梁标签。后续可以在钢板桩或钢梁标签中更改相应截面尺寸,但是推荐保持默认值(3.7.8.2)。

🔋 编辑墙体属性							
墙截面	A. 墙的类型 C. 钢板桩 B. 钢梁 组合钢板桩	F.显示					
Wall 1	1. 一般截面						
	选择截面 AZ 26	<ul> <li>Select from All ma</li> </ul>	anufacturers -				
	2.组合墙的属性	95窗山此动的95窗	Distance for W/A bins of the				
	System width 0 cm		wB 0				
	- • · · · · · · · · · · · · · · · · · ·	v o ch					
	A 197.91 cm2/m	v′ 0 cm	vB' 0 cm				
	lxx 55511.2 cm4/m	*** 0 cm	vB'' 0 cm				
	Sxx 2600 cm3/m	v' · · · 0 cm	vB''' 0 cm				
	Sxx1 0 cm3/m		Sxx2 0 em3				
	Sxx2 0 cm3/m						
	MANUFACTURER: Arcelor, LuxembourgLuxembour	NANUFACTURER: Arcelor, LuxembourgLuxembourg, SHAPE: Z					
	BIFORD ROLLED, NR, INTERLOOK, DR						
		h					
	v v						
	++ x'	<u> </u>					
粘肌	~						
复制							
443835	System wid	lth					
添加							
▼ 自动更新墙的尺寸		打开粉堆底 口 保友到物地	握底				
	<u></u>		NR/F NR/L AX/A				

图 3.7.8.1 组合钢板桩对话框

44编辑墙体属性		
墙截面 Wall 1	▲ 追約 <u>法</u> 1. 截面 设计 (从数据库选择) 截面 私2 25	]
	2. 钢板桩属性 h 42.6969997 cm A 197.91 cm2/m Interlock type DM Select Interlock type *	
	b 62.992 cm tf.1.3 cm Ixx 55511.2 cm4/m x 1.219 cm	
	SXX (2000 gms/m 0, 96.5 ) 开挖面以下无支撑长度LX系数 5	
	MANUFACTURER: Arcelor, LuxembourgLuxembourg, SHAPE: Z HOT/COLD BOLLED: HR	
<u>粘贴</u> 复制 删除		
添加 一 自动更新墙的尺寸	□ 打开数据库 → → → → → → → → → → → → → → → → → → →	

图 3.7.8.2 钢板桩对话框

# 3.8 数据输入:锚杆

### 3.8.1 数据输入: 锚杆

在模型中添加锚杆后,会弹出边界支撑对话框。在该对话框中,可以定义锚杆的精确坐标,自由段长度和嵌固段长度。并且,可以定义锚杆安装角度,锚杆水平间距和锚杆截面材料。点击编辑截面可以更改截面材料属性。

编辑支撑数据, Stage: 5		×
	Image: Second system       E. 包络线         1由段长度       1.835         自由段长度       8         加固段长度       8         1       10	1.4 预应力选项 词整支撑预应力 0 kN 反在支撑等一次被激活的阶 数有效
<ul> <li>螺旋锚</li> <li>修改支撑类型</li> </ul>	结构截面 <mark>Section-1</mark>	▼ ▲ 編 指 - - - - - - - - - - - - -
3. 激活/冻结支撑 - 永久或临时 ☑ 在本阶段激活支撑 Nonlinear Behaviour: Linear elast 這索引: 0, End: -1	Temporary support	确认取消

图 3.8.1 编辑锚杆对话框

符号	描述
Х	锚杆 X 坐标
Z	锚杆Z坐标
自由段长度	自由段长度
嵌固段长度	嵌固段长度
嵌固段有效长度	嵌固段有效长度,以百分比形式
a	锚杆安装角
水平间距	锚杆水平方向间距
预应力	选项:考虑锚杆预应力
结构截面	定义锚杆结构截面
螺旋锚杆	选项:使用螺旋锚杆
改变锚杆类型	选项:使用不同锚杆型号
激活/冻结	选择当前阶段激活/冻结
临时锚杆	定义锚杆为临时或永久

编辑支撑对话框中 B. 选项标签,可以选择锚杆和墙体主单元连接或者和使用从属单元 连接。

编辑支撑数据, Stage: 5	
A. 一般 B. 选项 C. 结果 D. 注释 B. 包络线	
- 主-从行为(高级)	
<ul> <li>将甲元连接到墙身从属节点</li> </ul>	Master Slave Nodes Nodes
建议	Slave Element
	Rigid or gap
	Main wall axis
· · · · · · · · · · · · · · · · · · ·	确认取消
Carcaracions	

图 3.8.2 编辑锚杆对话框-选项标签

结果标签中,可以查看锚杆计算结果。

编辑支撑数据, Stage: 7	x
A. 一般 B. 选项 C. 结果 D. 注释 B. 包络线	
1. 支择反力和何载 Paxial = 222.9 kN = 111.4 kN/m	
Mi≈ U kN-mi	
2. 支撑的结构和岩土校核 应力校核= 0.579	
支撑轴向承载力计算值	
Pall= 385.1 kN Pult= 519.9 kN	
Pall= 385.1 kN Pall= 1476.2 kN	
Pult= 519.9 kN	
Used FS Pullout= 1.35	
From qSkin.ultimate each soil type, Pall.geo = Pult_GEO / FS_GeoUser x 1476.17 kN	
FS_GeoBond.Code = 519.87/(1.35 x 1) = 385.089 kN	
L L L L L L L L L L L L L L L L L L L	
calculations	

图 3.8.3 编辑锚杆对话框-结果标签

下表中列出了结果列表:

符号	描述
Paxial	锚杆轴力
М	弯矩
Pall	允许结构承载力

Pult	极限结构承载力
Pall	允许岩土承载力
Pult	极限岩土承载力
使用的 FS	极限岩土设计承载中使用的整体安全系数

模型计算完成后,单击显示所有计算结果,将弹出 html 文件,包含当前阶段当前锚杆执行的所有计算公式和结果。

#### 3.8.2 数据输入: 锚杆截面

单击一般>>结构截面>>编辑锚杆截面窗口,弹出锚杆对话框。

在对话框中,可以定义钢绞线材料和直径,注浆选项和岩土安全系数。大多数情况下, 为了获得更高的承载力,注浆是压力注浆。通过输入密实系数以提高抗剪强度来考虑这种效 应。使用这些系数的时候要小心,这些系数可用于初步估计锚杆抗拔承载力。在绝大多数的 项目中,所有锚杆都要测试。对于粘结强度部分,可以选择粘聚系数行为(粘结系数),锚 杆抗拔承载力摩擦部分通过锚杆平均有效围压计算(侧向静止土压力 + 顶部&底部竖向应 力),忽略承载力。锚杆截面形式有:

- a) 钢绞线或自定义钢筋
- b) 实心钢筋
- c) 自定义面积
- d) 微型钢管桩
- e) 微型型钢桩

₰ 锚杆-截	面		
锚杆截面		A. 一般 B. 岩土 C. 高级	
Section-0	)	1. 名称	
6-Strands	5	Section-1	
		2. 钢绞线选项 (自由段) <b>钢筋材料 Strands 270 ksi ▼</b> fy 1882.1 ▼ MPa E 200100 MPa	
		类型 选择直径或者钢筋数里	
		● 钢绞线或自定义钢 钢绞线直径 Cm Effect. A 0.76748	
		Standard strands 教型 17	
		新经直径Di ⁰ cm cm	
		<ul> <li>○ 微型钢管柱</li> </ul>	
Жа	数据库打开	⑦ 微型型钢桩 Å 18.19 cm2	
	添加截面	3.注浆选项(锚固段) 混凝土材料 Fe 4ksi	
	删除截面		
<b>□</b> ‡]	「开数据库	- 保存到数据库	

图 3.8.4 锚杆-截面对话框

可定义的属性如	如下表:
---------	------

符号	描述
名称	定义截面名称
钢绞线材料型号	选择钢绞线材料
fy	钢筋屈服强度
Е	弹性模量
钢绞线直径	钢绞线直径(如果选择了钢绞线)
Di	钢绞线内径(如果选择了钢绞线)
No	钢绞线数量(如果选择了钢绞线)
Bar#	钢筋直径(如果选择了实心钢筋)
No	钢筋数量(如果选择了实心钢筋)
А	钢筋面积(如果选择了自定义钢筋)
混凝土材料	选择注浆体使用的材料
Dfix	嵌固段(注浆段)直径。直径通常是执行直
	径的函数 Dsfil=a*Dperf(或钻孔直径)

当程序主界面>>设计>>岩土安全系数(Geo FS)未选中时,将使用对话框中的岩土安全系数。

┩ 锚杆-截面	
锚杆截面 Section-0	A 一般 B. 岩土 C. 高级
Section=1 6-Strands	1.石工女王永敏
	显示高级岩土选项
	3. 根据围压应力评估承载力
	A. 摩擦抗剪强度
	B. 粘结抗剪强度
	■ 密实系数
	1 和時示效
从数据库打开	
	2. 土-混凝土粘结强度
添加截面	
00.35-37 (E64 ) E64	
📴 打开数据库	□ 保存到数据库 确定 取消

图 3.8.5 高级岩土选项

在该对话框中可以定义下列属性:

符号	描述
极限粘结力	定义极限粘结力(如果选择该选项),勾选 该选项后,由该值计算锚杆嵌固段极限抗拔 承载力
-	使用和定义摩擦型抗剪强度(如果选择该选 项)

-	使用和定义粘结型抗剪强度(如果选择了该
	选项)
粘结系数	定义粘结系数(如果选择了使用粘结系数选
	项)

### C. 高级标签中可以定义以下属性:

₩ 锚杆-截面	X X X X X X X X X X X X X X X X X X X
锚杆截面	A. 一般 B. 岩土 C. 高级
Section-1	1. 结构允许应力系数
6-Strands	<b>允许应力系数 0.86957</b>
	2. 颜色洗顶
	(前面段) (前面段)
	3. 自定义抗损承载力
	□ 白宝>>抗损费载力
	Fall 0 kN Fmax 0 kN
	4结构承载力
	Fall 2945.37 kN Fmax 2945.37 kN
	5. 土钉结构参数(单根)
	Ixx. Strand 0. 1582 cm4
	Sxx. Strand 0.2294 cm3
从数据库打开	Zxx. Strand 0.3966 cm3
	5. 弹性地基梁选项
添加截面	◎ 忽略弹簧承载能力 (弹簧将不会破坏). 相当于线.
刪除截面	
▶ 打开数据库	□ 保存到数据库 现消

#### 图 3.8.6 高级选项

符号	描述	
-	定义结构允许应力系数	
-	定义锚杆嵌固段和自由段颜色	
Fall	定义抗拔承载力(如果选中了自定义承载力	
	选项)	
Fmax	定义抗拔承载力最大值(如果选中了自定义	
	承载力选项)	
Fall	定义结构允许承载力	
Fmax	定义结构最大允许承载力	
Ixx.strand	钢绞线惯性矩	
Sxx.strand	一根钢绞线弹性截面模数(用于土钉)	
Zxx.strand	一根钢绞线塑性截面模数(用于土钉)	
-	选项: 忽略弹簧承载力 (弹簧不会破坏, 推	
	荐使用)	

### 3.8.3 数据输入:螺旋锚杆截面

在螺旋锚杆截面对话框中,可以从锚杆数据库中选择锚杆或者添加新的截面。当前项目 中可以使用其中的锚杆。一般标签中包含计算锚杆极限抗拔承载力选项。高级标签中,可以 指定安全系数和自定义岩土/结构允许承载力和极限承载力。

螺旋锚杆截面	A. 一般 B. 抗拔承载力选项 C. 高级	3
Shaft 2-3/8 x 12 inch helix Shaft 2-7/8 x 12 inch helix	1. 名称	
Shaft 3-1/2 x 12 inch helix	Shaft 2-3/8 x 12 inch helix	制造商 RAM JACK
Shaft 4-1/2 x 12 inch helix MH313-Gelvenized	电话: Not specified	www.ramjack.com
MH313R-Galvanized	2. 轴管尺寸及属性	
MH325-Galvanized MH325R-Galvanized	f 270 - MPa	f 270 - MPa E 551.7 ksi
MH425-Galvanized	吉尔	
MH425R-Galvanized	直1空 6.032 cm	Ixx 41.6 cm4
MH431R-Galvanized	厚度 0.483 cm	Sxx 11.5 cm3 Telastic 5.6 kN-m
MH625-Galvanized	執管西征 3.312 cm ²	Zerr 14 Z cm3 Tplastic 6.06 kN-m
MH637-Galvanized		2XX 14.1
MH637R-Galvanized	🥅 轴管外部注浆	J 66.6 ^{cm4} 轴管抗拉承载力
MH646R-Galvanized	注浆体直径 2.375 cm	rx 1.918 cm Qyield 348.168 kN
		Quitimate 464,224 kN
	3. 螺旋板尺寸与围体	
	- 「「「「「「「「」」」「「」」「「」」「「」」「「」」「「」」「」」「」」「」	硫和效甲
	健议值	1 to 6) 1 端部偏置 0.152 m
		🔄 不同尺寸的板
添加裁责	· 博选坂吉尔 20 49	螺旋板面积 0.070142 - 12 01.1
200701000100	埃加印度直径 30.46 cm	Ah U. UTUT42 m 2 Uhelix Ah
	螺旋板间距 0.914 m	螺旋板倾斜 7.62 cm 单根螺旋锚杆
删除截面	螺旋板厚度 0.952 cm	387 15 kN
MAGNUM		
T	R	
B. 弹性地基梁选项		
Ignore capacities for spring m	nethods (Spring WILL NOT FAIL).	确定

## 图 3.8.7 螺旋锚杆截面

对话框中包含的属性如下表:

符号/选项	描述
Fy	锚杆抗拉屈服强度
Fu	锚杆抗拉极限强度
直径	锚杆直径
厚度	锚杆厚度
Ixx	惯性矩
Sxx	弹性截面模数
Zxx	塑性截面模数
Telastic	轴管抗扭屈服承载力
Tplastic	轴管抗扭极限承载力
Е	弹性模量
Apipe	锚杆轴管面积
Qyield	轴管抗拉屈服承载力
Qultimate	轴管抗拉极限承载力
Helix diameter	螺旋板直径
Helix spacing	螺旋板间距
Helix thickness	螺旋板厚度
Effective helix area	螺旋板有效面积
Helix pich	螺旋板倾角
Qhelix	一块螺旋板极限抗拉承载力
Fs	安全系数
σ'vmax	有限竖向应力

## 3.9 数据输入:内支撑截面

单击一般>>结构截面>>内支撑截面,弹出内支撑对话框。或者当在模型中添加水平支 撑或者斜撑时会弹出编辑支撑对话框,再点击结构截面后面编辑按钮,也可以打开内支撑对 话框。软件中水平支撑和斜撑截面形式可以选择为I型截面,圆管截面和空心截面。软件中 包含了所有欧洲标准和美国标准截面。可以在数据库中选择或手动编辑支撑属性。属性信息 如下表:

▶ 内支撑截面	×
内支撑截面	A. 类型-尺寸 B. 高级
PM600X19 PP24v0 500	1. 名称
112480.000	PM600X19
	2. 截面类型
	◎ ○ 回答#示 PM600X19 ▼
	Metric pipes write PM912X19 in mm,
	press enter
	◎ □ 空心截面 双构件选项
	<ul> <li>● 単构件</li> </ul>
	钢材 A50 🔹 🔿 双构件
	☑ 内支撑截面不屈服(非线性分析)
	〒 手动编辑内支撑属性
	3. 截面尺寸 - 力学属性
	150 cm A 346.77 cm2 fy 344.8 MPa E 200100 MPa rx 20.5486 cm
	tr 1.9 cm ry 20.549 cm
删除截面	Ixx 146488.5 cm4 Iyy 146488.5 cm4 J 4687660.7 cm4 W 2.67 kW/m
活力就不	Svx 4883.3 cm3 Svv 4883.3 cm3 Zxx 6415.5 cm3 Zvv 6415.5 cm3
~》6/3月第7日	
▶ 打开数据库	□ 保存到数据库

符号	描述
D	高度或直径
А	截面面积
fy	屈服强度
Ixx	强轴惯性矩
Іуу	弱轴惯性矩
Sxx	强轴弹性截面模数
Syy	弱轴弹性截面模数
rx	强轴惯性半径
ry	弱轴惯性半径
Zxx	强轴塑性截面模数
Ζуу	弱轴塑性截面模数
tP	厚度
J	转动惯量
W	理论重量
构件偏置	对于双排型钢,该值值双排型钢间水平间距
Lb	无支撑翼缘长度。这意味着将以固定间隔提
	供横向支撑。程序不会设计水平支撑。

### 图 3.9.1 支撑截面对话框

型钢构件数量可以选择单个或者两个,同时需要定义构件间距,。对于支撑截面选为H 型钢时,建议截面旋转选为竖向。

<ul><li>截面旋转</li><li>◎ 水平</li><li>○ 竖向</li></ul>		$\begin{array}{c} \begin{array}{c} \begin{array}{c} t_{\mathbf{y}} & \mathbf{y} & t_{\mathbf{y}} \\ \uparrow \mathbf{x} \\ d & \mathbf{x} \\ \downarrow \end{array} \\ \begin{array}{c} t_{\mathbf{u}} \\ \downarrow \end{array} \\ \begin{array}{c} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \end{array} \\ \begin{array}{c} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \end{array} \\ \begin{array}{c} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \end{array} \\ \begin{array}{c} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \end{array} \\ \begin{array}{c} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \end{array} \\ \begin{array}{c} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \end{array} \\ \begin{array}{c} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{x} \end{array} $
双构件选项		KH
○ 単构件		
C AATON	构件偏置 0.5	m
	☑ 翼缘支撑	
	Lb 0.5	m

图 3.9.2 多个型钢构件选项标签

内支撑截面属性定义完成后,可以在编辑支撑对话框(在模型视图中双击支撑或斜撑) 中定义支撑或斜撑预应力。如果施加预应力,只在安装支撑的阶段施加预应力。对于支撑来 说,预应力为负值是指压力(推荐)。

编辑支撑数据, Stage: 5	make, has sold	X	
A. 一般 B. 选项 C. 结果 D. 注	主释 E. 包络线		
1. 尺寸 1.1 在墙上坐标 X 0.427 m Z <mark>-7.12 m</mark>	1.3 长度 自由段长度 Lfree n. 12.073 m	1.4 预应力选项	
1.2角度 <b>α</b> 180 °		0 KM 仅在支撑第一次被激活的阶 段有效	
	水平间距 3 m	Note: Negative value	
2. 支撑类型与结构截面	Adjust structural stiffness	for struts	
	结构截面 GB-SSP630x10	→ 编辑	
🔲 Use Hydraulic or Mech. Stru	ts    九许出现拉		
2. 无支撑长度选项	****		
📃 目定义尤支撑长度	毎直无支:	撑长度 LuV n m	
□ 修改支撑类型			
3. 激活/冻结支撑 - 永久或临时			
☑ 在本阶段激活支撑 Nonlinear Behaviouri Linear ale	Temporary support		
Nonlinear benaviour. Linear erastic perfectly plastic			
墙索引: 0, End: 1	Show full calculations	确认取消	

### 图 3.9.3 支撑预应力对话框

模型计算完成后,单击显示全部计算结果选项,将弹出一个 html 文件,包含当前阶段 当前支撑所有计算结果及相关公式。 Dead Load Moments: MxDL= 0 k-ft, MyDL= 0 k-ft

Classify section flange for compact/noncompact status, Table B4.1

$$\lambda = \frac{b f}{t f} = 16.977$$

$$\lambda r = 0.56 \sqrt{\frac{E \text{ steel}}{f y}} = 13.487$$

 $\lambda$  greater than  $\lambda r$  flanges in compression classified as slender.

Classify flanges in flexure, Table 4.1, Item 1.

图 3.9.4 内支撑计算结果

#### 3.9.1 液压和机械支撑

单击一般>>结构截面>>液压和机械支撑截面,弹出液压和机械支撑截面对话框(图 3.9.4)。或者当在模型中添加水平支撑或者斜撑时会弹出编辑支撑对话框,再点击结构截面 后面编辑按钮,也可以打开液压和机械支撑对话框。注意:如果想从编辑内支撑对话框中进 入编辑液压和机械支撑截面对话框,需要在编辑支撑数据>>2.支撑类型与结构截面标签中, 勾选 "使用液压和机械支撑"。



图 3.9.5 液压和机械支撑截面对话框-类型和尺寸标签

液压和机械支撑截面可以是箱型或圆管。可以手动编辑支撑属性或者从数据库中导入。

属性信息如下表:

符号	描述	
D	高度或直径	
А	截面面积	
fy	屈服强度	
Ixx	强轴惯性矩	
Іуу	弱轴惯性矩	
Sxx	强轴弹性截面模数	
Syy	弱轴弹性截面模数	
ГХ	强轴惯性半径	
гу	弱轴惯性半径	
Zxx	强轴塑性截面模数	
Zyy	弱轴塑性截面模数	
tP	厚度	
J	转动惯量	
W	理论重量	
选项:使用圆形截面,并可以在下拉列表中选择型号		
选项:使用箱型截面,并正	可以在下拉列表中选择型号	
选项:使用千斤顶	可以选择使用机械或者液压千斤顶	
定义千斤顶类型	(液压或机械)	
定义液压或活塞补充数据	居(取决于千斤顶类型)	
定义杆	体数量	
定义杆体内径尺寸		
定义杆体外径尺寸		
定义流体模量 (选择液压千斤顶)		
定义流体长度(选择液压千斤顶)		
Lcon	m 首端连接板长度	
Lhydraulic unit	液压装置长度(选择液压千斤顶)	
选项:手动修改支撑截面属性		
选项:支撑截面不屈服(非线性分析)		

支撑类型为液压支撑时,在非线性分析中,使用活塞面积和长度确定刚度。分析中假设 只考虑主支撑截面和液压千斤顶,计算等效刚度。

在强度标签中,可以定义额定支撑承载力,结构允许承载力和极限承载力,或者手动插入轴向承载力和长度关系图表,这个去现场通常厂商会提供。包含了一些选项,定义承载力 图表是否为允许承载力和分析中使用是否该曲线。



图 3.9.6 液压和机械支撑截面对话框-强度标签

在活络头标签中,可以定义活络头材料属性。



图 3.9.7 液压和机械支撑截面对话框-活络头标签

包含的选项如下表:

编辑名称
选项: 使用圆管截面或箱型截面
定义单元长度
定义单元厚度
定义首端和尾端单元尺寸
定义活络头翼缘厚度
选项: 首端到尾端刚度是连续的
选项:每边都使用加劲肋
加劲肋尺寸(当选择使用加劲肋)

如果此时不检查活络头和连接板结构承载力。认为它们的承载力等于或大于主支撑截 面。详细信息请咨询提供结构的厂商。



图 3.9.8 液压和机械支撑截面对话框-连接板标签

在连接板标签中可以选择使用的连接板和定义连接板类型。包含以下选项:

- 编辑首端封头板
- 编辑尾端封头板
- 编辑首端连接板
- 编辑尾端连接板
- 编辑连接板类型

连接板数据	×
🖻 使用连接板	
-1. 形状类型 Circular	
2. 尺寸(基本单元)	
岸度 0 cm	
深度或直径 0 cm	
3. 加劲肋	
□ 使用加劲肋	
-	7/2
	确定 取消

图 3.9.9 液压和机械支撑截面对话框-连接板数据对话框

在连接板数据对话框中可以选择使用连接板和加劲肋,以及定义连接板和加劲肋的尺 寸。包含下列选项:

选项:使用连接板
定义连接板类型(圆形,矩形)
定义连接板厚度
定义连接板高度或直径
选项:使用加劲肋
定义加劲肋高度
定义加劲肋在顶部的长度
定义加劲肋在底部的长度
定义加劲肋的厚度
定义加劲肋数量

加劲肋和其他单元只是用来显示,不是用来对这些单元进行结构承载力检查。

连接板类型和数据对话框中可以定义首端或尾端封头板类型和属性。

板类型和数据			×
1. 形状类型			
型号(或名称)			
Pin type/Swivel			<b></b>
2. 尺寸 (基本单元)			
岸度	3.002	cm	
D	0	cm	
3. 封头板的数里			
首端封头板	3		
尾端封头板	2		
		确定	取消

图 3.9.10 液压和机械支撑截面对话框-封头板数据对话框 包含的选项如下表:

定义封头板名称
选择封头板类型(Pin type/swivel or Base plate for mechanical)
定义封头板厚度和直径
定义封头板位于支撑起止位置处的数量

封头板数据只用用来显示,对于承载力(定义承载力图表)相关信息询问相应厂商。

## 3.10 数据输入: 板截面和板支撑

单击一般>>结构截面>>板截面,弹出板截面对话框(图 3.10.1)。或者当在模型中添加板时会弹出编辑支撑对话框,再点击结构截面后面编辑按钮,也可以打开板对话框。A.截面属性标签中可以修改混凝土和钢筋材料属性以及定义墙体纵向钢筋和抗剪钢筋的数量和型号。也可以在编辑支撑对话框(在模型视图中双击板支撑)中定义板预应力。在 A.截面属性标签中定义的信息如下表:

▶ 板截面	
- 板截面	A. 截面属性 B. 高级 C. 截面包络线
Slab H=30cm Slab H=40cm	1. 名称 S1ab H=20cm
	-3. 结构材料 □ -3. 结构材料 □ -3. 结构材料 □ -3. 结构材料
	E     21541.8     MP a       Image: Grade 60     fyk 413.8     MP a
	4. 截面尺寸 D 20 cm A 2000 cm2 Ixx 66667.8 cm4 荷载 5.00000000 kl/m
	B 100 cm 重新计算属性
	5. 板的纵向钢筋 顶部钢筋
	底部钢筋 N 6 Bars # 题 ▼ = AsBot 17.03 cm 2 3 cm
	钢筋使用米制单位D10指10mm,美国用 # 来表示钢筋型号
添加截面	6. 抗剪钢筋 Bars# ▼ = As 0 cm2 sX0 cm sY0 cm
刪除截面	
	确定取消

图 3.10.1 板截面对话框

符号	描述
D	板计算宽度
А	面积
В	板计算高度
Ixx	强轴惯性矩
tf	翼缘厚度
Bar#	钢筋型号
As,top	顶部钢筋面积
As,bot	底部钢筋面积
Ctop	顶部钢筋保护层厚度(顶部外壁到钢筋中心
	的距离)
Cbot	底部钢筋保护层厚度(底部外壁到钢筋中心
	的距离)
sX	抗剪钢筋水平距离
sY	平面外方向抗剪钢筋分布(俯视图中查看)

编辑支撑数据, Stage: 5			
A. 一般 B. 选项 C. 结果 D. 注释 E. 包络线			
1. 尺寸 1.1 在墙上坐标 X 0.427 m Z -4.31 m 1.2 角度	1.3 长度 自由段长度 Lfree 12.8 m	1.4 预应力选项 一 <b>调整支撑预应力</b> 0 kt 仅在支撑车入支莱苯汤酚	
<b>α</b> 180 °	自动长度	<b>設有效</b>	
	水平间距 1 m		
。 十增米到什么地	📄 Adjust structural stiffness		
-2. 又揮央望句始构戰面	结构截面 Slab H=20cm	- 编辑	
□ 在竖向应力中考虑板自重(看作底板 End Moment Connection Effective (%) ↓			
2. 无支撑长度选项 □ 目定义大支撑长度			
-3. 板面活荷载 	📃 对所有阶段施加相同的活荷载		
□修改支撑类型			
<ol> <li>激活/冻结支撑 - 永久或临时</li> <li>☑ 在本阶段激活支撑</li> </ol>			
Nonlinear Behaviour: Linear elastic-perfectly plastic			
	Show full calculations	确认 取消	

图 3.10.2 板作用标高,间距和截面属性对话框

C. 结果标签, 当模型计算完成后显示板计算结果信息。

1	扁辑支撑数据, Stage: 5
	A. 一般 B. 选项 C. 结果 D. 注释 E. 包络线
	-1. 又推入力和问题。 Paxial = N/C kN = N/C kN/m
1	Lateral Force Flat = N/C kN = N/C kN/m
	M = N/C kN-m
Н	1.1 板弯矩 1.2 板剪力
	Mleft = N/C kN-m Mright = N/C kN-m
l	MLdesign = N/C kN-m MRdesign = N/C kN-m MCanacityTon = N/C kN-m
1	Motor propaging SI S Illegton - N/C - LD-
1	
	2. 支撑的结构和岩土校核 应力校核= [W/C
	支撑轴向承载力计算值
	Pall= N/C kN Pult= N/C kN
	3.1 岩土承载力 3.2 结构承载力 3.2 化内承载力
	Pall= N/C kN Pult= N/C kN
	Pult= ^{N/C} kN
	N/A N/A
Π	墙索引: 0, End: −1 Show tull 确认 取消
l	calculations with the second

图 3.10.3 结果对话框

下表中列出了板计算结果信息:

符号	描述
Paxial	板支撑反力
М	跨中弯矩
Pall	轴向允许承载力
Pult	轴向极限承载力
Mleft	左侧弯矩(当约束板时)
MLdesign	左侧弯矩设计值(标准值除以安全系数)
Mright	右侧弯矩(当约束板时)
MRdesign	右侧弯矩设计值(标准值除以安全系数)
Mcapacity top	板负弯矩承载力
Ubottom	水压力(密封开挖时,当板用于模拟密封板,
	作用在板底部的水压力标准值(未除以安全
	系数))
Vleft	左侧剪力
VLdesign	左侧剪力设计值
VLcap	左侧剪力承载力
Vright	右侧剪力
VRdesign	右侧剪力设计值
VRcap	右侧剪力承载力

除此之外,还可以查看板的岩土允许/极限承载力和结构允许/极限承载力。

### 3.11 数据输入:固定支撑

单击一般>>绘制固定支撑,可以添加固定支撑。固定支撑用来固定支撑的水平位移。 单击该选项后,可以在墙体上单击,生成固定支撑。

# 3.12 数据输入: 弹簧支撑

单击一般>>绘制弹簧支撑,可以添加弹簧支撑。单击该选项后,可以在墙体上单击, 生成弹簧支撑,将弹出编辑支撑对话框。在 A.一般标签中,可以定义轴向刚度和转动刚度 以及弹簧支撑在墙体上的位置(图 3.12.1)。

编辑支撑数据, Stage: 5	ander, has sold	×	
A. 一般 B. 选项 C. 结果 D. §	主释 E. 包络线		
1. 尺寸 1.1 在 <u>墙上坐标</u> X 0.2135 m Z <mark>-11.91 m</mark>	1.3 长度 自由投长度 Lfreem	1.4 预应力选项 <b>调整支撑预应力</b>	
1.2角度 α <mark>-180</mark> °	水平间距 1 m	仅在文操第一次被激活的阶 設有效	
<ol> <li>支撑类型与结构截面</li> <li>结构截面</li> </ol>			
洋簧线内度k 0 kX/cm 屈服拉力( kX			
g單菌转50附则度kk。U kky x aa 为如hbi在力U kky			
3. 激活/冻结支撑 - 永久或临时 ◎ 在本阶段激活支撑			
[ [	Show full calculations	确认取消	

图 3.12.1 弹簧支撑对话框

## 3.13 数据输入:边坡稳定性

### 3.13.1 边坡稳定性分析

软件中的边坡模块可以执行边坡稳定性分析。分析方法包括:毕肖普法(Bishop),摩 根斯顿-普莱斯(GLE),斯宾塞(Spencer)和瑞典条分法(Swedish)。定义边坡的方法如 下:首先,创建边坡或者台阶(在模型中右键,选择设置左侧台阶),将会弹出放坡对话框。 通过定义边坡角度或竖向距离与水平距离比值方法定义边坡面。

♥修改地表形状- 放坡选项 1. 計体的份景	23
<ul> <li>● 基坑左侧</li> <li>○ 基坑右侧</li> </ul>	
定义坡度 ● 指定坡脚 0 ° ○ V/H (竖直高度/水平宽度) 法 V 1.5 to H 1	
<ul> <li>3. 放坡类型</li> <li>&gt; 坡脚无平台</li> <li>&gt; 坡脚有平台</li> <li>● 台阶式放坡</li> </ul>	
<ol> <li>4. 标高和台阶尺寸</li> <li>拳墙标高 0</li> <li>平台宽度 5</li> <li>台阶标高 10</li> </ol>	
5. 放坡的阶段       全部阶段       小阶段       小阶段         5	
确定取消	

图 3.13.1 设置台阶对话框

其次,为分析的边坡定义圆心点坐标或圆心矩形区域。



图 3.13.3 矩形圆心坐标搜素 再次,选择滑裂面通过的点。滑裂面形状有以下几种:

圆弧滑动面:在模型中定义一条圆弧。



图 3.14.4 单一圆弧

自定义指定滑裂面:指定滑裂面通过的点。



图 3.13.5 自定义滑裂面

块形滑面:指定滑裂面通过的两个点.

Bishop

User specified surface



图 3.13.6 限定滑裂面通过指定点

Bishop Block analysis: PT1 (-6.13m, -10.52m), PT2 (-2.06m, -15.43m)

定义滑块基点。指定滑裂面通过的位置。  $\geq$ 



图 3.13.7 两个点

单击边坡>>选项,弹出边坡稳定性选项对话框。在 1.方法标签中,可以定义边坡稳定 性分析方法(图 3.13.8)。

🚯 边坡稳定性分析选项	×			
8. 拉力裂缝				
1. 万切万法 2. 圆弧中心   3. 丰径搜索   洗择分析方法	系 4. 王动/ 微动 5. 支择 6. 其他 7. 二维何 <b>報</b>			
<ul> <li>         ・ ・ ・</li></ul>	塞 (条块间合力与水平方向夹角 8 为常数)			
◎ 摩根斯顿·普赖斯 ◎ 0r di:	inary (Swedish Method)			
摩根斯顿・普赖斯参数(条块间满足力	1和力矩平衡的微分方程)			
m 1	FSO 1			
v 1	2.0 0			
f(x) = [sin(PI * X'^v)]^m				
每个搜索点的最大迭代次数	100			
收敛误差	1 %			
初始条块宽度	1 m			
最小条分数	10			
	确定取消			

图 3.13.8 边坡稳定性选项-分析方法标签

标签中的属性信息如下表:

符号	描述
Bishop	毕肖普方法
Morgenstern Price	摩根斯顿-普莱斯方法
m	条块间满足力和力矩平衡的系数(如果选择了摩根斯顿-普莱斯)
V	条块间满足力和力矩平衡的系数(如果选择了摩根斯顿-普莱斯)
FS0	假设初始的安全系数(如果选择了摩根斯顿-普莱斯)
$\lambda 0$	假设初始的换算系数(如果选择了摩根斯顿-普莱斯)
Spencer	斯宾塞方法
Janbu	简布方法
-	每个搜索点的最大迭代数
-	收敛误差
DX	初始条块宽度
-	条块最少数量

在 2.圆弧中心标签中,可以定义圆弧滑裂面的圆心。

🔖 边坡稳定性分析选项		×
8. 拉力裂缝		
<ol> <li>1. 分析方法 ^{2.} 圆弧中心 3.</li> <li>定×圆弧搜索的网格间距</li> </ol>	半径搜索   4. 主动/被动   5.	- 支撑 6. 其他 7. 三维荷载
创建搜索网格或搜索点		
Rectangle with coordinates	relative to wall	-
水平搜索范围		
左 -20	■ 右 20	m
步数 5		
垂直搜索范围		
顶部 40	m 底部 0	m
步数 5		
旋转角度(矩形搜索)		
	旋转 0	٠
		确定取消

图 3.13.9 边坡稳定性选项-圆弧中心标签

标签中的属性信息如下表:

符号		描述
只使用一点	对于圆弧滑裂面的圆心,选择只使用一个点作为圆心。	
输入坐标确定圆心	坐标确定圆心。	
左	左边搜索界限(圆心搜索类型为矩形)	
右	右边搜索界限(圆心搜索类型为矩形)	
步数	两个水平向边界	尺寸间搜索步数(圆心搜索类型为矩形)
顶	顶部搜索界限(	圆心搜索类型为矩形)
底	底部搜索界限(	圆心搜索类型为矩形)
步数	两个竖向边界尺	寸间搜索步数(圆心搜索类型为矩形)
旋转	搜索的旋转角度	

在 3.半径搜索标签中,可以定义圆弧滑裂面的半径。

🚯 边坡稳定性分析选项		×		
8. 拉力裂缝	2 半谷抱寺			
1. 分析方法 2. 圆弧甲心 所有搜索面半径都是根据通过	墙体水平左侧的坐标来确定	初 5. 文择 6. 具他 7. 二难何報  的		
· 洗项∶使用单—半径				
■ 单一半径进行搜索		40 m		
—————————————————————————————————————				
■ 指定精确坐标 (2 点)				
半径开始于				
◎ 墙底部+ 0	m			
◎路基+ 5	m			
半径结束于				
◎ 模型底部	10			
◎ 起始半役 +	10 m			
◎ 标品	30 m			
半径増量	5			
		确定 取消		

图 3.13.10 边坡稳定性选项-半径搜索标签

标签中的属性信息如下表:

符号		描述
使用单一半径搜索	选项:使用单	一半径搜索
指定半径精确坐标界限	选项:指定半径精确坐标界限(起始半径和最终半径)	
初始 R	初始半径(如果选择了指定半径精确坐标界限)	
最终 R	最终半径(如	果选择了指定半径精确坐标界限)
指定精确坐标	选项:两个点	确定半径的搜索范围
初始 X	初始搜索点 X	1.坐标
初始 Z	初始搜索点 Z	坐标
最终 X	最终搜索点 X	【坐标
最终 Z	最终搜索点 Z	坐标
半径起始于	定义半径起始	界限(如果上述三个选项都未选中时)
半径结束于	定义半径结束	界限(如果上述三个选项都未选中时)
半径增量	定义半径增量	- -

在 4.主动/被动标签中, 定义主动和被动楔形分析的选项。
🚯 边坡稳定性分析选项				x
8. 拉力製         2. 圆弧中心         3           1. 分析方法         2. 圆弧中心         3           在垂直面上定义主动和被动楔(         3	- 半径搜索 4. 主动/被动 体极限角	5. 支撑 6. 其他	7. 三维荷载	
主动角范围	30 •			
被动角范围				
🥅 考虑被动角范围	60 <b>0</b> 0			
块体分析 一块分析				
		确定	取消	

图 3.13.11 边坡稳定性选项-主动被动标签

符号	描述
考虑主动角范围	选项:考虑主动角范围,并且可以定义角度
扫描主动角	选项:考虑扫描主动角(如果选择了考虑主动角范围选项)
角度范围+,步数	定义角度范围和步数(如果选择了考虑扫描主动角)
考虑被动角范围	选项:考虑被动角范围,并且可以定义角度
扫描被动角	选项:考虑扫描被动角(如果选择了考虑被动角范围选项)
角度范围+,步数	定义角度范围和步数(如果选择了考虑扫描被动角)
使用块体分析	选择使用块体分析
初始 X	块体初始点 X 坐标(如果选择了块体分析)
初始 Z	块体初始点 Z 坐标(如果选择了块体分析)
最终 X	块体最终点 X 坐标(如果选择了块体分析)
最终 Z	块体最终点 Z 坐标(如果选择了块体分析)
步数	块体分析步数(如果选择了块体分析)

在 5.支撑标签中,可以定义是否包含支撑力。

ſ	🕲 边坡稳定性分析选项	
	8. 拉力製缝 1. 分析方法 2. 原弧中心 3. 半径搜索 4. 主动/被动 5. 支撑 6. 其他 7. 三维荷载	
	支撑力选项	1
	◎ 考虑支撑反力	
	◎ 丙烷文基吸收承载能力	
	田迭代确定土钉力的发挥(较长计算时间)	
	锚杆选项	
	☑ 考虑条块底部的锚杆剪力	
	🥅 Adjust shear due to tieback normal reaction on slice (CN code recommends 0.5)	
	Ignore tieback vertical force at wall	
	确定 取消	

图 3.13.12 边坡稳定性选项-支撑标签

标签中的	属性信	[息如]	下表・
1/1/ <u>1/</u>   H1	/1-3/1-L IF		1 1/2.

符号		描述
考虑支撑反力	选项:支撑反	力
考虑支撑正常使用承载力	选项:包括支	[撑正常使用承载力
考虑支撑极限承载力	选项:包括支	[撑极限承载力
忽略支撑力	选项: 忽略支	[撑力
由迭代确定土钉力的发挥	确定在迭代过	t程中发挥的土钉力(当 FS=1)
最小发挥系数	以极限承载力	百分比确定最小发挥系数(如果选择了根据迭
	代过程确定土	出钉力的发挥选项)
相互作用发挥系数 Inails.mob	相互作用发挥	系数(如果选择了根据迭代过程确定土钉力的
	发挥选项)。	该系数用于确定发挥的土钉力,根据下式:
	Fmob= (Fx,u	ltimate-Fx,FS) *Inails.mob+Fx,FS=1

在 6.其他标签中,可以选择考虑墙体剪力。

🔥 边坡稳定	性分析选项					X
8. 拉力裂缝	ł					
1. 分析方法	5 2. 圆弧中心	) 3. 半径搜索	4. 主动/被动	5. 支撑 6.	其他 7. 三维荷载	
- 埴体剪切				-		
■ 在稳定 遺除外	性分析中考虑增 )	「体抗関本執力(	排桩和排桩加挡	怓		
□ 桩墙抗:	拔承载力					
▼ 考虑岩	土体抗拉能力					
在起止条块	垂直面上的土体	本剪力				
◎ 忽略						
<ul> <li>静止土」</li> </ul>	玉力					
◎ 主动/初	幼土压力					
30	垂直间隔	数				
注释・该讲	而也可控制本自	9.纪止垂直面的2	不可衡则向荷载			
AIL 14∓ + 16X,729	W CHILLING HE		1977-1981 (2019) 19192			
				确定	取消	
		_				

图 3.13.13 边坡稳定性选项-其它标签

标签中的属性信息如下表:

描述
选项: 在稳定性分析中考虑墙体抗剪承载力(排桩和排桩加挡板墙除外)
选项: 板桩墙抗拔承载力
选项:考虑岩土体抗拉
选项: 忽略条块垂直面上的土体剪力(最后条块)
选项:条块垂直面上使用静止土压力
竖向条块数量
选项:在条块底部包括锚杆剪力(如果有锚杆)。那么当锚杆嵌固段和条件底部相交时,条
块收到的方向力和剪力增加。(毕肖普方法)

在 7.3D 荷载标签中,可以定义三维荷载信息。

🚯 边坡稳定性分析选项		×
8. 拉力裂缝 1. 分析方法 2. 周弧中心 3. 半径4	第本 4 主动/補助 5 支撑	6 其他 7. 三维荷载
确定作用在条块上基础荷载的方法		
◎ 忽略所有基础荷载		
◎ 考虑全部基础荷载		
◎ 考虑墙体y轴方向最大支撑间距范[	国内的基础荷载.	
○ 仅考虑平面外搜索范围 (墙体y坐标)	动的基础荷载.	
从 ¥+ [-10 ]m 至	Y+ 10 m	
	「「お中	TIN:H
	1/HIVE	4X/FI

图 3.13.14 边坡稳定性选项-三维荷载标签

标签中有以下选项:

忽略所有基础荷载(和其他 3D 荷载)

考虑所有基础荷载(和其他 3D 荷载)

考虑墙体 Y 轴方法最大支撑间距范围内的基础荷载

仅考虑平面外墙体 y 轴方向界限内的基础荷载。

在 8.拉力裂缝中,可以选择拉裂缝信息。

😳 边坡稳定性分析选项	X
1. 分析方法 2. 圆弧中心 3. 半径搜索 4. 主动/被动 5. 支撑 6. 其( 8. 拉力裂缝	也 <mark>7. 三维荷载</mark>
✓ 考虑拉力裂缝	
12月表達及初 ◎ 用户指定拉裂缝深度	
拉製鏟深度 0 m	
○ 自动计算裂缝深度 (从第一层开始)	
☑ 用水填充裂缝	
	TTE VIC

图 3.13.15 边坡稳定性选项-拉力裂缝标签

标签中有以下选项:

考虑拉裂缝

指定拉裂缝深度

输入拉裂缝深度值(如果选择了指定拉裂缝深度选项)

自动确定拉裂缝深度(从第一层土)

裂缝中充满水

### 3.13.2 土钉

土钉通常用于加固边坡。可以在模型中添加一根或多根土钉(图 3.13.16~17)。在土钉 上双击,将弹出编辑土钉对话框,在该对话框中可以编辑土钉属性。





## 图 3.13.17 添加一排土钉

在编辑土钉对话框中一般标签,可以设置土钉位置,土钉长度和安装角等信息。也可以 定义面板角度,土钉截面等(图 3.13.8)。单击结构截面选项后边的编辑按钮,弹出锚杆截 面对话框,可以在该对话框中选择土钉材料类型。在编辑土钉对话框中还可以定义土钉承载 力损失(腐蚀等)和其他分析选项。

编辑土钉	×
A. 一般 B. 结果 C. 详细的结果 C. 包络线	
1. 名称	
Nail 1	
-1. 尺寸	(2と度
	I.5 KJE
	Lifee
4 -0.89 m	Lfix 8.591 m
1.2 角度	
a 19.664 °	水平间距 1.0 m
1.4 面板	·
面板角度 6109	9.664 °
。 士博光到的往初老子	
- 2. 又揮突望和结构截面 结构截面 Seation=0	1012
■ 承載力揭生 (腔袖笔)	
结构承载力损失诜项	
厚度损失 tC 0	cm
□ 损生百分比 承载力损失 0	% = from tC
3 浙迁/在结古博-永行的武作时的	
▼ 为此阶段激活支撑 □ 永久支	খ
	- 午前:11
◎ 六医角刀 即回報刀 和 □ ろ尾山	[1] 第 60
4 设置阶段	
● 本阶段	◎ 全部阶段
◎ 州的按 0 0	
	Z资本 用n2比
	HHAE AXA

#### 图 3.13.18 编辑土钉对话框

符号	描述
Х	土钉起点X坐标
Z	土钉起点Z坐标
Lfree	土钉自由长度
Lfix	土钉嵌固长度
а	土钉安装角
水平间距	土钉水平间距
β	面板角度

还有以下选项:

定义土钉截面,选择并编辑

选择承载力损失

- ◆ 厚度损失 tC
- ◆ 承载力损失占总承载力百分比

选择当前阶段激活或冻结支撑

定义支撑是永久支撑还是临时支撑(当选择设计方法时该选择对计算结果有影响)

选择只使用外部荷载分析

考虑土钉剪切(当土钉穿过滑裂面位置时)

2. 支撑类型和结构截面 结构截面 Sectio	•n-0 •	编辑
□ 承载力损失 (腐蚀等) 结构承载力损失洗面		
	厚度损失 tC O	cm
□ 损失百分比	承载力损失 0	% = from tC
	图 3.13.19 编辑土钉截面	Ĩ
3. 激活/冻结支撑−永久的或临 ☑ 为此阶段激活支撑	时的	

图 3.13.20 分析选项

☑ 考虑土钉剪切

在 B.结果标签中,可以查看以下结果:

☑ 只使用外部荷载分析

扁辑土钉			×
A. 一般 B. 结果 C. 详细的	的结果 C. 包络约	ŧ.	
1. 支撑反力和荷载			
Paxial =	N/C kN =	N/C kN/m	
Shear torce =	M/C kN =	N/C KN/m	
Po at face=	N/C kN	Pmax mob=	N/C kN
Pmax.Stage=	N/C kN	Pmax.All stages=	N/C kN
		Pmax.Global=	N/C kN
2. Soil nail structural	checks		
帕乔拉	2/月校校= 11/0		
拉应	[力校核= N/C		
剪应	[力校核= N/C		
2.1 拾钱承裁书		2.0 结构承载书	
5.1 机极体取力 Paeo.Desian	N/C FN	Pdesign= N/C kN	
		Pult= N/C kN	
Pgeo.ultimate	N/C KN		
Used FS Pullout=	N/C		
		确定	即消

## 图 3.13.21 结果选项

符号	描述
Paxial	土钉轴力
М	土钉弯矩
Po.At face	土钉坡面反力
Pmax.mob	土钉发挥的轴力最大值
Pmax.stage	当前阶段最大反力
Pmax. All stages	所有阶段最大反力
Pmax. Global	所有连接断面最大反力
Pgeo. Design	岩石设计承载力
P geo. ultimate	岩土极限承载力
Pdesign	结构设计承载力
Pult	结构极限承载力

在 C.详细结果标签中,可以查看以下结果:

		Tension	Tension max	Tension capacit STR	Design Tension cap GEO	Crit. shear GEO	Shear cap STR	Shear C2	Shear C3	
Þ	Units	ĿN	kN	ĿN	kN	kN	кN	kN	kN	1
	0:	-	-	-	-	-	-	-	-	1-
	1:	-	-	-	-	-	-	-	-	1-
	2:	-	-	-	-	-	-	-	-	T
	3:	-	-	-	-	-	-	-	-	1-
	4:	-	-	-	-	-	-	-	-	T
	5:	0	0	0	0	0	0	Not	Not	1

图 3.13.22 详细结果选项

拉力:当边坡临界破坏 FS=1 时,土钉产生的拉力。

拉力最大值:所有滑裂面中土钉产生的最大拉力。

拉力承载力 STR: 土钉岩土承载力。

临界剪力 GEO:下面三个标准计算得到的剪力最小值。

剪力承载力 STR:结构抗剪承载力。

剪力 C2: 根据(C1,C2,C4)标准计算得到的剪力(详见边坡稳定手册,P31-33)。

剪力 C3: 同上。

剪力 C4: 同上。

剪力 C4 LE: 同上(LE: 极限平衡法)。

模量 ks: 在临界破坏点位置处水平向地基反力模量。

土压力: 详见边坡稳定手册, P31。

极限土压力: 详见边坡稳定手册, P31。

长度:临界破坏时,土钉计算长度。

Ixx calc:土钉惯性矩(包含腐蚀等因素的折减)。

Sxx calc:土钉截面模数(欧洲: Wel).

厚度损失:包含土钉支护厚度损失。

%STR 损失:包含结构承载力损失(当考虑腐蚀时)。

## 3.14 数据输入: 腰梁

在软件中,可以在支撑上添加腰梁。腰梁施加在支撑和墙体的连接点位置处。为了创建 一个新的腰梁,首先要创建支撑。支撑创建完成后,单击一般>>创建支撑上的腰梁按钮, 在支撑上单击,将弹出腰梁对话框。在该对话框中可以选择腰梁类型。包含很多荷载类型, 点荷载,局部荷载。下表中列出了荷载类型。

对话框中可以定义以下信息:

- 编辑腰梁名称
- 定义截面属性,选择并编辑。
- 定义竖向间距
  - ▶ 支撑间距
  - ▶ 墙间距
  - ▶ 自定义值
- 定义轴力
  - ▶ 轴力为零
  - ▶ 支撑反力百分比
  - ▶ 自定义值
- 荷载类型
  - ▶ 点荷载(适合排桩)
  - ▶ 均布荷载



图 3.14.1 腰梁对话框











156



下一步可以选择腰梁截面,单击编辑按钮(图 3.14.2)。在弹出的腰梁截面对话框中选 择使用钢材还是混凝土(图 3.14.3~4)。

Wales	
输入 结果 所有阶段的结果	
名称: Wale beam 1	
X 12.5 m Z -7.12 m	
截面	
编辑	
选择断面 H-Waler 🗸	
🥅 Use Hydraulic Waler Section	

图 3.14.2 编辑腰梁截面按钮

腰梁截回		
腰梁	名称 Wale O	腰梁截面图
Wale O	1. 类型	
	● I型截面 HL 920x491' -	
	◎ 🔝 混凝土	
	钢梁材料和选项	
	材料 Fe360 - fy 235 - MPa	
	■根据支撑类型自动旋转(例如描杆) 转角 β 0 ○ (Member Weak axis from verti	
	■多根梁	Π
	🔲 手动修改钢梁截面属性	
	1. 钢梁	
	截面属性	
	D 80 cm A 623.3 cm2 t 2.6 cm 上 是否为槽钢	5 5
	bf 42.2 cm t 4.7 cm k 6.6 cm 👉 y k	
	Ixx 966300 cm4 Iyy 59000 cm4 Cw 1222000 cm6	
	Sxx 20200 cm3 Syy 2796 cm3 rT 11.2 cm	
添加截面	rx 39.4 cm ry 9.7 cm W 4.81 kW/m	
	Zxx 23000 cm3 Zyy 4335 cm3 J 3441 cm4 里新叶昇	
删除截面		
		确定 取消

图 3.14.3 钢梁截面

腰梁截面			
腰梁	名称 Wale 0	腰梁截面图	
Wale O	1. 类型		
	○ → I型截面		
	◎ 】 混凝土 RM60X40 -		
	混凝土腰梁材料和选页 混凝土 <u>C20/25</u> ← fc' <u>20</u> ← MPa 钢筋 <u>S410</u> ← fy <u>410</u> ← MPa		
	☑ 采用混凝土腰染时,地连墙使用内部腰梁(位于地连墙内部)		· · ·
	2. 混凝土腰梁		
	截面属性		• •
	D 80 cm B 60 cm A 4800 cm2		• •
	Distances to Center		
	顶部钢筋(靠墙侧) of Bar		
	N 6 Bars # ∲20 ▼ = AsTop 18.852 cm2 Ctop 3 cm		
	底部的前(开挖侧)		
添加截面	N6 Bars#		
删除截面	Bar# ₱10		
			确定取消

图 3.14.4 混凝土截面

单击钢材,会显示以下信息:

使用多根钢构件:支撑的腰梁可以使用多根钢构件。钢构件的间距可以自定义。

<u>自动旋转腰梁</u>:对于某种支撑(锚杆,弹簧支撑),且选中使用多根钢构件时才会起作用。 腰梁的安装角自动和支撑安装角一致,或者自定义腰梁安装角(图 3.14.5)。对于某种支撑, 腰梁安装角是水平的,例如斜撑(图 3.14.6)。旋转只适用于型钢梁。



图 3.14.5 锚杆中旋转腰梁



图 3.14.6 竖向斜撑中水平腰梁

手动修改型钢截面属性:手动修改腰梁截面属性。



图 3.14.7 竖向斜撑中混凝土腰梁

当腰梁材料类型洗择混凝土时	(图 3.14.7),	需要定义钢筋信息,	如下表:

符号	描述
D	腰梁高度(厚度)
А	截面面积
В	宽度
Bar#	钢筋型号
As,top	顶部钢筋面积
As,bot	底部钢筋面积
Ctop	顶部钢筋保护层厚度(顶部外壁到钢筋中心的距离)
Cbot	底部钢筋保护层厚度(底部外壁到钢筋中心的距离)
sV	抗剪钢筋竖向距离
sH	抗剪钢筋水平向距离



图 3.14.8 腰梁对话框-混凝土截面结果

符号	描述
Paxial	作用在腰梁上的轴力
Mspan XX	沿 X 轴方法跨中弯矩
Msup XX	沿 X 轴方法在支撑位置处弯矩
Mspan YY	沿 Y 轴方法跨中弯矩
Msup YY	沿 Y 轴方法在支撑位置处弯矩
Vxx	沿X轴方向剪力
Vyy	沿Y轴方向剪力
Рсар	轴向承载力
Mx cap	沿X轴弯矩承载力
Му сар	沿 Y 轴弯矩承载力
Vxcap	沿 X 轴剪力承载力
Vycap	沿 Y 轴剪力承载力

结果标签中信息如下表:

# 3.15 数据输入: 混凝土支座

混凝土支座将斜撑的力传递至土层中。一个混凝土支座可以连接多道斜撑。软件考虑了 作用在混凝土支座上的净水平力。当计算混凝土支座滑移安全系数时,软件同时计算混凝土 支座两边的力。根据库伦理论,不考虑墙体摩擦角,使用平均墙面角度计算主被动土压力。 考虑到只有当位移很大时才会增加被动抗力,因此忽略混凝土支撑摩擦角。软件没有考虑混 凝土支撑竖向承载力。软件也会计算作用在混凝土支座上的斜撑作用力以及基底抗剪强度。



图 3.15.1 竖向斜撑混凝土支座

混凝土支座数据	-	-		-	×
Input Results 名称	Results all	stages			< ►
Heelblock 1					
1. <u>生</u> 称 X 5.78	m Z	-15	m 📃 左侧	被动面	
-2.尺寸	而郭寒度	1 5	_	古田ソトロ	
	底部宽度	1.5	m	高度和 1.5	m
🔽 连续支座					
3. 分析选项					
	底部摩擦比	0.67	(O to 1)		
	底部粘结比	0.5	(O to 1)		
4. 激活/冻结 ☑ 在本阶段激活					
				确定	取消

图 3.15.2 竖向斜撑混凝土支座数据

混凝土支座输入数据如下表:

参数	描述
顶部宽度	混凝土支座顶部宽度
底部宽度	混凝土支座基底宽度
高度 H	混凝土支座高度
Z	混凝土支座顶部标高
X	混凝土支座 X 坐标,是指承受主动土压力的竖向面的位置
左侧为被动面	选项:选中后混凝土支座的倾斜面在左侧,其参考点坐标在右侧。
混凝土支座是连	选项:选中后混凝土支座看作是连续的。
续的	
水平间距 S	混凝土支座非连续时,定义其水平间距
长度 L	考虑混凝土支座 3D 形状,平面外方向混凝土支座长度 L<=S
基底界面摩擦比	墙体摩擦家与土体摩擦角的比值。用于计算基底抗剪强度。一般不超过0.67
(0-1)	(或者 67%土体摩擦角)
基底界面粘聚比	对于黏性土,基底和土体之间存在粘聚力。通常使用 0.5.使用时要注意该
(0-1)	值是当混凝土支座和土完全接触时才适用。
	m3 是通过提高被动抗力宽度来考虑三维效应。该系数通过乘以支座高度
三维楔体效应 m3	增加了混凝土支座每一边的宽度。因此,被动抗力计算宽度:
	s.pass=L+2*m3*H<=S

# 3.16 数据输入:横梁支撑

横梁支撑用于模拟箱形或圆形横向支撑。横梁支撑使用腰梁截面以及在横梁支撑对话框中定义的形状信息。

通常开挖深度不深的情况下,经常使用箱形类型的横梁支撑。这种情况下,可能不需要

其他类型的支撑,因为圆形横梁支撑通过自身的抗弯和轴力能够自稳。单击一般>>绘制支 撑>>绘制横梁支撑按钮,再在墙体上单击将弹出支撑数据对话框。

编辑支撑数据, Stage: 5	the Britshill Jame De-	X
A. 一般 C. 结果		
1. 尺寸 1. 1 <u>存遣上坐标</u> X 0.2135 m Z -14.34 m 1.2 角度 α0 ◇ >	1.2 Position Center	
2. 支撑类型与结构截面	结构截面 <mark>Fale support →</mark> ] 编量	
2. 无支撑长度选项 同目定义大支撑长度	水平无支撑长度 Luit 0 m 垂直无支撑长度 Luit 0 m	
3. 板面洁荷载 0.6 kPa	🥅 对所有阶段施加相同的活荷载	
<ol> <li>激活/冻结支撑 - 永久或临时</li> <li>在本阶段数活支撑</li> </ol>	Temporary support	
Nonlinear Behaviour: Waler as :	linear elastic spring	
[這索引: 0, End: -1	Show tull calculations 确认 取消	

图 3.16.1 横梁支撑数据

在支撑类型和支撑截面标签中,单击编辑,将弹出腰梁截面对话框。首先是选择横梁类 型箱形或圆形。所选择的形状类型影响结构承载力和刚度计算。对于箱形腰梁,均布荷载作 用下(简支梁或端部固定梁),等效刚度是根据假定弯矩变形和挠曲变形计算的跨中刚度。 每种情况下,根据所选形状在对话框右侧都显示了计算横梁弹簧刚度和弯矩的公式。

对于箱形横梁,长度L用于计算弯矩,宽度B用于计算轴力。如果需要检查L和B尺 寸呼唤,需要添加新的横梁支撑截面。



图 3.16.2 箱型横梁支撑输入对话框



图 3.16.3 圆形横梁支撑输入对话框

当存在竖向支撑时,无支撑长度考虑在竖轴方向的弯矩和挠曲。如果没有额外的竖向支 撑,这个尺寸就等于长度 L。

对于圆形横梁,长度L用于定义单元数量。在计算时,横梁截面要匹配指定圆形半径,因此后续可能需要调整(例如,不能有4.6个横梁截面,而是四舍五入取5个)。根据开挖边界,程序会自动计算半径或自定义该值。等效刚度根据径向作用理论,主要影响因素包括有效弹性模量,半径,横梁截面面积。

由于安装和其它因素,通常进行刚度调整,特别是混凝土横梁截面。因此,程序提供了 一些选项包含两个刚度修正系数。这些系数用于修改指定横梁支撑的弹性模量。

最后,对于横梁支撑来说,偏心问题(由于施工原因)非常重要。因此,程序建议输入 水平方向偏心率 3%或者最小偏心距 10cm。偏心率作为跨中截面一个附加的弯矩。根据实 际情况这些值可以修改。

参数	描述
长度 L	支撑长度(平面外方向)
宽度 B	支撑宽度(平行于X轴)
无支撑长度	竖向轴方向无支撑长度
刚度调整	在非线性分析中,考虑安装或其它因素,对弹性模量进行修正。
偏心率(%)	X 方向轴向荷载位置与横梁截面高度比值,以百分比形式的最
	小偏心率,
最小偏心距	X 方向轴向荷载最小偏心距(英寸或厘米)
横梁弯曲类型	选项:横梁类型。影响最大正负弯矩和梁的刚度。

# 第四章:模型修改和结果查看

# 4.1 修改地表标高

软件中模拟地表标高有多种选项,修改标高和点信息可以通过以下方法:

▶ 在地表的一点上双击:将弹出坐标点对话框,可以定义该点坐标。

<b>》</b> 修改	点	×	
坐标			
Х	-32	m	
Z	0	m	
	~~~	The sale	
1	用正	- 职)月	

图 4.1.1 修改点坐标

▶ 单击一般>>地表设置选项,或者在项目模型中右键,在下拉菜单中选择设置台阶或斜。

图 4.1.3 左侧斜坡地表

图 4.1.5 在模型中右键下拉菜单

地表设置选项有以下菜单:

图标	描述
- 	重置整体地表高程
	设置右侧地表高程
÷	设置左侧地表高程

×y	坐标表格
	左侧台阶
	左侧斜坡
	右侧台阶
	右侧斜坡
	开挖
	回填

单击坐标表格选项,弹出坐标表格对话框。表格中包含了所有地表点的坐标。可以自定义修改这些值,添加或者删除。

图 4.1.6 坐标表格

▶ 点击视图左侧,查看-绘图标签中开挖或回填选项。再在屏幕上单击一些点,按 Enter 键结束定义。

图 4.1.7 使用开挖工具开挖

图 4.1.8 使用回填工具回填

4.2 图形化添加支撑

软件中可以图形化添加支撑,首先选择支撑类型。下表是绘制某些支撑的方法。

工具	描述
图标	
+ 2	添加锚杆支撑(单击一般>>支撑>>绘制锚杆)。锚杆可以用于连接两道墙,在这
U.	种情况下锚杆当作横撑。
+ ¤	添加水平支撑(单击一般>>支撑>>绘制水平支撑)。支撑用于连接两道相对的墙。
	添加斜撑。软件中将斜撑看作是倾斜的支撑。注意:使用时要确保斜撑放置在被动
+	区之外,斜撑是否有效。如果将斜撑放置在被动区以内,软件不会自动调整斜撑反
	力。然而,对于边坡稳定性分析,如果斜撑位于搜索范围内,软件将忽略斜撑。
+ ⊠	添加板支撑(单击一般>>支撑>>绘制板支撑),板支撑用于连接两道相对的墙。
• [-	
-0-	添加固定支撑(单击一般>>支撑>>绘制固定支撑)
Luui	添加弹簧支撑(单击一般>>支撑>>绘制弹簧支撑)
1 (11)	

实例:添加锚杆 💅

第一步:单击添加锚杆图标

第二步: 在墙的某一位置处单击

第三步: 在土层合适的位置处单击,确定锚杆嵌固段端点。

第四步: 自动弹出编辑支撑窗口。输入锚杆的设计数据, 单击确定按钮关闭窗口。

通过上述步骤,成功地创建了锚杆。如果想要改变锚杆属性,在支撑位置上双击,或者在 树型视图中选择锚杆。 图 4.2.1 中显示了锚杆,板支撑和水平支撑连接两道墙。定义方法和上述步骤基本一致。

图 4.2.1 锚杆连接两道墙

图 4.2.2 板连接两道墙

图 4.2.3 支撑连接两道墙

4.3 图形化添加荷载

软件中可以以图形化形式添加超载和线荷载。选择荷载对于图标之后就可以绘制荷载。 下表中提供了某些荷载绘制方法。计算墙体上的水平超载 q 使用的是 DM7.2, Poulos & Davis, 和 Kelvin 方法。这些方法更适用于作用在水平面上的荷载,但是大多数情况下,对于作用 在非水平面上的荷载,这些方法也得到较满意的结果。每一种荷载可以同时定义水平和竖向 荷载分量。不同阶段相同的荷载可以改变荷载。

at	绘制地表条形超载。在不同阶段,可以改变荷载的高程(根据表面标高自动调整), 但是控制荷载的两个点 Z 坐标始终一样。荷载包含水平 X 方向和竖向 Z 方向。默 认荷载是竖向,值为 1kPa。如果要修改荷载,在荷载位置处双击,将弹出编辑荷载 对话框。
	绘制线超载。定义的方法同地表条形超载。
*	绘制墙身荷载。墙身荷载是直接添加到墙上的条形荷载。在墙体上任意两个位置处 单击(默认荷载值为1kPa)。如果要修改荷载,在荷载位置处双击,将弹出编辑荷 载对话框。
++	绘制墙身线荷载,定义的方法同绘制墙身超载。
+ ^{3D}	添加三维基础荷载。选择该选项后,在基础中心所处的位置处单击,程序将自动弹 出基础荷载编辑窗口,可以在该窗口中定义基础荷载信息。

实例:添加地表条形超载

- 第一步:单击绘制地表条形超载图标
- 第二步: 单击超载位置第一点:
- 第三步: 再单击超载位置第二点;
- 第四步:程序将自动弹出编辑超载对话框,在该对话框中修改荷载信息。

通过上述步骤,成功地创建地表条形超载。如果想要再次修改荷载,可以在荷载位置处双 击,将弹出编辑超载对话框。

图 4.3.1 选择绘制地表条形超载(第一步)

图 4.3.2 选择第一点 (第二步)

图 4.3.3 选择第二点(第三步)

4.4 在结果标签中查看结果

项目分析完成后,可以单击结果标签中的菜单查看相应结果。下表中列出了结果标签中可选择的菜单及对应功能描述。

图标	描述
TOE	显示嵌固安全系数
	显示最小安全系数
	显示最小安全系数对应的临界滑裂面
	显示条块计算结果
2	显示所有稳定性计算结果
	在模型视图中显示墙体弯矩图
101.	在模型视图中显示墙体剪力图
	在模型视图中显示墙体轴力图
7 ⁺	在模型视图中显示墙体水平位移图
	在模型视图中显示地表沉降图
R	在模型视图中显示支撑反力

Ь	在模型视图中显示组合承载比(弯矩和轴力)
	在模型视图中显示弯矩承载比
Ē	在模型视图中显示剪力承载比
₽	在模型视图中显示支撑结构承载比
	在模型视图中显示墙体抗弯承载力
	在模型视图中显示墙体抗剪承载力
0. HE	在模型视图中显示有效土压力
$\sigma_{\rm VI}$	在模型视图中显示总竖向应力
σ_{VE}	在模型视图中显示有效竖向应力
4	在模型视图中显示墙身净总压力
T	在模型视图中显示墙身超载
EQ. W(V ^{ar}	在模型视图中显示地震压力
U.	在模型视图中显示净水压力
u	在模型视图中显示水压力
H	在模型视图中显示水力梯度
Max Min	显示计算图表中的最大最小值
EHV,	当显示弯矩或支撑反力结果时,显示弯矩或支撑反力包络
1	各种计算结果统计表
U	水压力分布云图
H	水头分布云图
H	等水头线
₽ ₽	突涌安全系数
<u>a</u> vi	总竖向应力云图
Q _{VE}	有效竖向应力云图

下列图片中显示了一些典型的输出结果。只有当项目分析完成后,才能查看计算结果。 为了直接的对计算结果对比,可以同时显示多个计算结果。

图 4.4.2 典型的弯矩图

图 4.4.3 典型的剪力图

图 4.4.4 支撑反力

图 4.4.6 地表沉降

图 4.4.8 水压力

4.5 报告选项(打印报告)

项目分析完成后,所有的分析结果都可以通过报告>>报告选项>>报告管理器有选择的 生成。在报告管理器窗口左侧,可以选择生成报告的断面和阶段(图 4.5.1)。在可选择报 告章节标签中,可以选择想要生成的内容。也可以直接拖动某些章节到报告格式目录中。内 容定义完后,可以以 WORD 或 PDF 格式预览报告。

图 4.5.1 包含的设计断面区域

图 4.5.2 可用的报告断面区域

加载	保存	另存为
预览	输出pdf文档	输出word文档

4.5.3 报告格式区域以及预览和输出按钮

4.6 基础荷载 (三维荷载)

很多情况下需要考虑三维荷载对墙体的影响。可以使用基础荷载,在任意阶段定义三维 荷载。对于评价作用在墙体上的三维荷载效应,程序中提供了很多有用的方法。弹性理论解 理论上适用于地表水平情况,然而,对于地表非水平时,在没有其他解析解的情况下也可以 使用弹性理论解。对于地表非水平时使用弹性理论解,要清楚地知道弹性理论解自身的限制。

DeepEX2018 用户手册

🛃 基础选项 (三纲	佳荷载)		145. I	×	
一般高级	基础名称	New Footing O			
X -44.77	ft T 2	ft	z (x,y,z)		
Y O	ft By 5	ft			
□ 位于地表 P 0	L 10) ft	T J Bx y J J J J J J J J J J J J J J J J J J		
 ● 0 逆时针 ■ 点荷载(计算时间较短) ■ 将荷载按照支撑间距S进行平均(计算时间较长) 					
- 激活/冻结 ☑ 在本阶段激活 断面)	(全部设计	应用修改于 ● 全部阶段 ◎ 从阶段	◎ 本阶段		
			确认取	消	

图 4.6.1 基础选项对话框一般标签

🛃 基础选项 (三维荷载)			×
一般 高级 基础荷载的平均划分间隔,此时 载的情况下这些参数无效	时基础压力视为点荷:	载。在基础作为点荷	
	1 6+	nMin 5	
Dyw定义沿墙方向的间隔距离,	计算由基础荷载引起	<u></u>	2
均化超载选坝时,应力增重的 上应力变化作为支撑位置处的-	如照蔽大文瑾问距进7 一个单值进行计算。 	T平均。召则, Uyw无效,	Io
Dyw 2 ft			
激活/冻结	应用修改于 ② 全部阶段	◎ 本阶段	
☑ 在本阶段激活(全部设计 断面)	● 王和PP/IRX ○ 从阶段	0 至0	
		确认	取消

图 4.6.2 基础选项对话框高级标签

参数	描述
Х	基础中心点 X 坐标
Y	基础中心点 Y 坐标(平面外方向)
Z	基础标高(如果选择位于地表,程序将自动将基础放置在地表)
Т	基础厚度(计算不使用该值)
Bx	基础沿X方向宽度
Ву	基础沿 Y 方向宽度(平面外方向)
Θ	逆时针旋转角度
L	柱子长度(计算不使用该值)
将基础看作点荷载	计算作用在墙上水平荷载时,选择该选项将基础作为点荷载。选择
	该选项后,可以选择以下菜单:
	默认公式: 当基础位于地表时, 使用布辛涅斯克解
	(Boussinesq)。当基础位于地表以下时,使用明德林解
	(Mindlin),泊松比 v 取 0.25。

	布辛涅斯克解 (柔性墙, xmloads)
	● 用太沙基解(Terzaghi)(刚性墙, Hwall)
	用 DB33/T1008-2014 规范方法(刚性墙,m=2)
	当未选择该选项,对于矩形荷载(Poulos & Davis, 1974),软件使
	用 Holl 1940 解。该方法和泊松比 v 无关。这个方法适用于作用在
	水平地表的荷载。对于矩形荷载位于地表以下的情况,也使用该方
	法。注意: 该方法并不是这种情况下的理论下, 只是近似采用。
将荷载按照最大支撑	如果想要将荷载平均到最大支撑间距,就选中该选项。荷载平均范
间距 S 进行平均	围是(y-最大支撑间距/2)到(y+最大支撑间距/2)。计算每个 Dyw
	增量的荷载值。nMin 最小分割数量。
Dx	该版本未使用
Dy	该版本未使用
nMin	沿Y轴方向最小间隔数
Dyw	当荷载按照最大支撑间距选择后,计算应力增时荷载划分的间隔
	数。

4.7 建筑物和建筑物向导

基坑工程通常紧邻建筑物,传递到挡土墙上的建筑物荷载可能会很大。因此需要考虑这部分荷载。计算建筑物荷载非常耗时。软件中利用建筑物向导可以更加容易地估算建筑物荷载。

单击一般>>绘制荷载>>绘制三维建筑物荷载,在模型视图中某一位置处单击,将弹出 建筑物向导对话框。

Superstructure	1. 基本 2. 楼层 3. 基础 4. 柱 5. 墙 6. 高级	激活
Xwidth	1. 名称	阶段
Ywidth	Bldg. 0 🗸 显示名称	▶ 0 🔽
	Building type Concrete frame building	
rada Here	2. 坐标和尺寸 右側 Xo ^{-58.45} ft Grade Elevati ⁰ ft	
aue	Start Yo ©0 ft 🛛 😐 0	
НЬ	X方向宽度 30 ft(方向宽度 40 ft 2.世界日間	
	- 1 世界教達 上部结构层数mFs 3 建筑物高度H 30 ft	
(Xo, Yo)	地下室层数nFb 1 地下室埋深Hb 10 ft	
_≠ γ Basement	4. 柱的数量 x方向柱的数量 4	
ontinuous exterior	Y方向柱的数里 5	
	Damage Assesment Not performed	

图 4.7.1 建筑物向导基本尺寸标签

1.基本	
参数/图标	描述
+	创建三维建筑物荷载
X0	建筑物 X 方向坐标,右下角点。
YO	建筑物 Y 方向坐标,右下角点。
地上结构第一层底板标高	地上结构第一层底板标高
Θ	建筑物旋转角度
沿 X 轴方法宽度	建筑物沿 X 轴方法宽度
沿 Y 轴方法宽度	建筑物沿 Y 轴方法宽度
nF	上部结构楼板数量,包括第一层底板,不包括建筑物顶板。
nFb	地下室楼板数量(地面以下)
建筑物高度 H	地面以上建筑物高度
地下室高度 Hb	基础底板到地面的距离
X 方向柱子的数量	X 方向柱子的数量
Y 方向柱子的数量	Y 方向柱子的数量

2.楼板

图 4.7.2 楼板荷载选项

楼板活荷载	每层楼板上的活荷载(和地下室的可能不同)
楼板恒载	软件不会根据楼板厚度自动计算恒载。虽然这种计算很容易,但是
	还是需要手动执行楼板恒载的估计,要包括例如瓷砖等(这些荷载
	超出了当前软件版本要解决的内容)。地下室楼板可以添加不同恒
	载。
楼板厚度	楼板厚度只是用来显示,不用做计算。
楼面梁	选择该选项后,柱子之间楼板以下每边都使用楼面梁。根据楼面梁
	重度和截面面积计算恒载
楼面梁沿 X 方向宽度	楼面梁沿 X 方向宽度
楼面梁沿 Y 方向宽度	楼面梁沿 Y 方向宽度(平面外方向)
楼面梁截面面积	可以手动修改该值,该值用来计算楼面梁恒载。截面形式可以是任
	意的。
楼面梁密度	默认材料是混凝土,也可以修改为钢材和木材

3.基础标签

软件中所有的荷载最终都转化为矩形基础荷载。尽管在现实中并不是所有基础都是矩形的,但是这种假设符合绝大多数情况。3.基础标签,定义基础尺寸。注意:软件假设所有基础的材料是混凝土,并且根据基础的尺寸计算恒载。软件中也提供选项,可以包含地基梁。

分 建筑物向导	Nor will	×
Superstructure	1. 基本 2. 機层 3. 基础 4. 柱 5. 墙 6. 高级 1. 基础尺寸 . <td< th=""><th>激活</th></td<>	激活
Ywidth	X方向宽度 5 ft	▶ 0 🔽
Floor Beams	Y方向宽度 5 ft 🔄 地基梁连接基础	
H	厚度 1 ft	
Grade	2. 地基梁尺寸及选项	
	X方向宽度 1 ft	
	Y方向宽度 1 ft	
· · · · · · · · · · · · · · · · · · ·	截面面积 1 ft ²	
	3. 设置筏形基础	
Z (Xo,`Yo)	🗖 设置筏形基础 .	
† _≠ γ Basement		
Continuous exterior		
	Damage Assesment Not performed	

图 4.7.3 建筑物基础标签

参数/图标	描述
Х	基础沿 X 方向宽度
Y	基础沿Y方向宽度
厚度	基础厚度
使用地基梁	使用地基梁连接基础
地基梁沿 X 方向宽度	地基梁沿 X 方向宽度
地基梁沿 Y 方向宽度	地基梁沿Y方向宽度
使用筏板基础	选项:使用筏板基础

4.柱子标签

楼板荷载通过柱子传递作用,最终都要传递至基础上。在4.柱子标签中定义柱子等相关参数。

分 建筑物向导	free with							×
Superstructure	1. 基本 2. 楼层 1. 柱的尺寸	3. 基础	4. 柱 5.墙	6. 高级			激活	阶段
Ywidth Ywidth	X方向宽度	1	ft				► 0	
Floor Beams	Y方向宽度	1	ft					
apara n H	半径	1	ft 📄 圆柱					
Grade	截面面积	1	ft^2					
	材料		•					
<u>н</u>	密度	0.15	kcf					
7 (Xo, Yo)								
[†] <i>y</i> Basement								
Continuous exterior								
	Damage Assesm	ent Not pe	rformed	•	确定	取消		

图 4.7.4 建筑物柱子标签

参数/标签	描述
Bx	柱子沿 X 方向宽度
By	柱子沿 Y 方向宽度
半径	柱子半径 (如果选择了圆柱)
截面面积	柱子截面面积
材料	柱子材料
密度	柱子密度

大多数建筑物有墙,为了更好的模拟建筑物荷载,软件可以模拟外墙,内墙和地下室墙。 墙的荷载根据墙的截面面积乘以重度。墙体上开洞可以模拟门,窗和其它不计算恒载的对象。

◇ 建筑物向导		184.12
Superstructure	1. 基本 2. 楼层 3. 基础 4. 柱 5. 墙 6. 高级	<i>激</i> 活
Ywidth	1. 地下室结构外墙	阶段
Ywidth	☑ 有地下室外墙 Critical strains and	▶ 0 🔽
Floor Beams	描岸 T 1 ft 密度 0.15 kcf Select	
	2. 上部结构外墙	
	☑ 建筑物地表以上设有外墙 ● Description Critical strains and enderse of the strain of	
Grade	Wall function Not defined	
	撮厚 T 1 ft 密度 0.15 kcf	
🌐 🕂 💾 🖊	开洞室 40	
	Use material Select None	
	3. 内墙/隔墙	
+ y Basement	☑ 建筑物设有内墙/隔墙 D 建筑物设有内墙/隔墙 Critical strains and	
17	描厚 I 0.5 ft 密度 0.06 kcf Select	
walls	开洞军 25	
	Damage Assesment Not performed	
		.1

图 4.7.5 建筑物墙标签

该标签中有以下选项选择:

地下室结构外墙。选择该选项后,可以定义墙体厚度,重度和墙体颜色。 上部结构外墙。选择该选项后,可以定义墙体厚度,重度和墙体颜色。 内墙/隔墙。选择该选项后,可以定义墙体厚度,重度和墙体颜色。 6.高级标签中,可以选择是否包含地下室占有位置原土体的重量。选中该选项,软件将 不考虑该部分土体重量。根据建筑物所有角点处竖向应力的平均值,采用弹性解得到平均附 加应力。

图 4.7.6 建筑物高级标签

在模型视图中建筑物图形上右键可以选择编辑(图 4.7.7)。如果决定不考基础或者改变它的既有尺寸时,那么建筑物荷载将改变。根据支撑的楼板近似面积,计算所有柱荷载。同时,因为建筑物不完全是矩形,将保存为长条形。

图 4.7.7 建筑物俯视图

4.8 荷载选项

单击一般>>绘制荷载>>弹性荷载选项,可以定义在极限平衡法中使用的荷载计算

方法。软件中包含以下选项:

- 1. 弹性公式
- 2. 两个方向扩散角

图 4.8.1 超载效应的双向扩散角方法

3. 一个方向扩散角

图 4.8.2 超载效应的单向扩散角方法

4. 一个方向扩散角(土层 ϕ 值)

在弹性荷载选项对话框(图 4.8.3)中,可以选择外部荷载分析方法,定义扩散角度, 弹性参数以及考虑刚性墙。

×
ity equations for LEM 🔹
线性分析-荷载选项
随戦使用间化模型 基础和线何戦)
系形荷载扩散角 ⁴⁵
产生的超载可能引起弹性地基梁计算不
1.33.远坝,所有地栽塑菜根拟为条形荷菜 ↑析技术手册)并进行平均化,为了准确的 5.55.费应须是为到花费世界方相同的结查
) 虚成空烈定场而间就开垦市佔同时你高。 -线性荷载。
ity equations for LEM 线性分析-荷载选项 ;超载使用简化模型(基础和线荷载) 系形荷载扩散角 45 ° 产生的超载可能引起弹性地基梁计算不 该选项、所有地表超载模拟为条形荷载 计新技术手册)并进行平均化、为了准确的 把载性荷载.

图 4.8.3 荷载分析方法对话框

案例: 竖向的线荷载, 距离地连墙 5 英尺。创建了 3 个一样的设计断面。三种设计断面的荷载分析方法如下表:

设计断面	荷载分析方法		
1	弹性方程		
2	双向扩散角		
3	单向扩散角		

图 4.8.4 显示了模型中使用的信息。图 4.8.5~7 显示了每种情况下超载计算结果。

图 4.8.5 弹性公式计算得到的超载

图 4.8.6 双向扩散角方法计算得到的超载

图 4.8.7 单向扩散角方法计算得到的超载

4.9 项目造价预算模块

在造价预算模块中可用。

4.10 三维模型(3D 框架分析模块)

框架模块可以设计以支撑和腰梁作为支撑系统的基坑工程。三维定义包括项目边界和开 挖边界。墙体边界通常指定为开挖边界,在每个墙段(节点之间)可能会指定不同墙体截面。 腰梁一端支撑在墙体上,不同设计断面中腰梁上的荷载不同。 腰梁定义完成后,可以在腰梁 和立柱之间创建支撑。基于分析结果,软件将提取每个设计断面的荷载,并且计算出支撑和 腰梁的反力和应力检查。

框架分析更适用于箱型基坑,对于凹角或者其他特殊情况,可能需要额外建模。轴力分 布,做了一些简化假设。当前软件中没有包括考虑由于静摩擦或其他效应可能引起的腰梁轴 力的折减。

定义框架分析步骤:

创建至少一个设计断面(最好包含双墙)。

单击程序窗口左侧 3D 标签>>三维模型向导 三维模型向导 ,程序将自动弹出三维模型向导对话

框。

对话框中包含的标签如下:

1 轮廓标签

第一步就是选择是否使用已经定义好的轮廓边界,或者重新定义轮廓边界。为了在项目 视图中更好查看结果,推荐 DX 值(X 轴方向长度)取大一些。

三维模型向导					23
1.轮廓 2.设计断面 3.墙	体轮廓 4	. 地形 5.	确认		
选项1. 选择要使用的既有	[3D轮廓				
三维轮廓 Exc	avation Per	rimeter			- Edit
自导用3D轮廓中的	111111	点生成撮	体轮廓	。然后	用 3D 轮
閉生成墙体轮廓和	廾挖面、	以及所	有腰梁 林	山极。	
◎ 通过洪雨2生武圩准期/	7里钻花巷	DLEant公商	\ \		J
● 通过远坝2至成初准形1/A ● 选项2. 参加新的3D轮廓和	「私」の「の自う	KY Ton≱Rièb	/		
基准点X	0	Y	0		Z O
◎ 矩形 DX	30	m DY	30	m	Q O °
□ ○ 圆形					
Ľ					
					Next

图 4.10.1 三维模型向导轮廓标签

对话框中包含以下参数:

参数	描述
3D 轮廓	选项: 使用开挖轮廓或项目轮廓
选项创建新的三维轮廓和节点	根据间距和参考点自定义三维轮廓
参考点坐标	定义参考点坐标
DX 和 DY	定义矩形开挖场地的水平尺寸和竖向尺寸
Q	基坑旋转角度

2 设计断面标签

在该对话框中定义设计断面以及 3D 模型中的墙。设计断面用于生成支撑,开挖阶段和 开挖面等信息。墙体用于生成 3D 模型中墙体材料属性。输入支撑间距百分比作为支撑距离 基坑角点的位置。

三维模型向导 🛛
1.轮廓 2.设计断面 3.墙体轮廓 4.地形 5. 确认
设计断面
墙 Wall 1 ▼
在本页面选择要使用的设计断面和墙。设计断面用于生成所有支撑和开挖面。墙属性 由所选墙断面生成。
Location of first strut from corner
50 - % of Support spacing
Wale section
🔲 Use hydraulic
Next

图 4.10.2 三维模型向导设计断面标签

3 墙体轮廓标签

在该对话框中定义 3D 模型中使用的墙体轮廓。可以修改已经定义好的墙体轮廓。

三维模型向导	23
1.轮廓 2.设计断面 3. 墙体轮廓 4. 地形 5. 确认	
-3. 选择墙体轮廓	
◎ 修改既有墙的轮廓 0: Perimeter 0 ▼	
选择该选项来修改一道既有墙体的轮廓,这将覆盖所有既有墙体的轮廓数 据。否则,就要选择创建新墙体轮廓来生成一个新的墙体轮廓.	
腰梁区段	
☑ 不通过墙体轮廓定义,生成单独腰梁区段.	
生成全部单独的腰梁和每段腰梁上的支撑,作为从第一个腰梁节点偏移 的3D水平支撑或3D锚杆。相对标准选项,这将生成更多的3D项.	
Next	

图 4.10.3 三维模型向导墙体轮廓标签

4 地形标签

在该对话框中定义 3D 模型中开挖面,也可以创建新 3D 开挖面。可以选择重置所有节 点和可变节点标高。

三维模型向导	23
1.轮廓 2.设计断面 3.墙体轮廓 4.地形 5. 确认	
4. A. 开挖面	
◎ 用既有3D面修改 Excavation Surface ▼	
○ 创建新的3D开挖面	
☑ 重罢所有带占和司变带占标享	
重置所有固定节点到墙顶部标高,可变节点到与墙相邻的左侧台阶标高。	
Next	

图 4.10.4 三维模型向导地形标签

5 确定标签

在该对话框中定义哪个阶段为初始阶段,该阶段将首次激活墙。推荐总是使用阶段 0 作为初始阶段。

三维模型向导	23
1.轮廓 2.设计断面 3.墙体轮廓 4.地形 5. 确认	
注意:点击确认会修改既有三维模型数据,修改不可恢复(即不能撤销) 点击 确认 生成三维模型,	
初始阶段-激活已生成的墙	
初始阶段编号 0	
Next	

图 4.10.5 三维模型向导 OK 标签

下表中列出了框架分析模块的基本控制选项:

图 4.10.6 三维模型

对象	描述
20 二维平面视图	根据选择的参数, 创建 3D 模型中的 2D 视图
Black white	为了定义信息更加方便,可以在模型正常颜色和黑白框之间切 换
3D Frames	计算三维框架模型
Show lowest level - Show lowest level Elev2	选择在视图模型中要预览的支撑。选择最底层支撑选项将显示当前阶段最底层支撑。
+12	在选择的支撑标高处添加水平支撑
*	在选择的支撑标高处添加锚杆
1	断开模型。双击该选项后,可以修改所有构件。
AUT.	优化所有对象。模型计算完成后才能够使用。
×	截断线对象(墙,腰梁)
0	刷新模型阶段和属性

3D 模型创建完成后,可以修改每一个支撑和腰梁参数,删除或添加。

在腰梁上双击,将弹出腰梁数据对话框(图 4.10.7.a)。在该对话框中指定名称,标高, 墙体轮廓和墙段。在墙段上添加腰梁后,必须选择腰梁的起始节点和终节点。为了形成一个 整体腰梁之间要相互连接。在没有使用 B.加载模式>>使用附加荷载形式的情况下,告诉程 序初始加载时,使用的支撑编号。

腰梁数据		×		
A. 腰梁数据 B.	加载模式 C. 阶段-激	活 D. Joints		
名称 A_0				
标高	-2 m			
	📄 使用液压腰梁截面			
腰梁截面	H-Waler	▼ [编辑		
	🦳 Waler is concret	e cap beam		
墙边 界	Perimeter O	*		
	WNO	*		
		和其他腰梁连接		
起始节点	NO - A_3	*		
End node	N1 * A_1	•		
Support index	00 El2	*		
一竖向无支撑长度				
Braced at support locations				
		🔄 使用所有腰梁		
显示全部计算结	果 [确定 取消		

图 4.10.7.a 腰梁数据对话框及标签

在 B.加载模式中,可以定义沿着腰梁长度方向的加载模式,以及更加复杂的加载条件(图 4.10.7.b)。

腰梁数据			×			
A. 腰梁数据 B. 加载模式 C. 阶段-激活 D. Joints						
荷载模式通过	指定腰梁位置定义超载,傅	使用起点位置L1和	和终点位置			
	P					
▶ 使用何致得3	氏 〕荷载模式 数据					
	设计断面		-			
	Support index		*			
	起点 at L1=	·	n			
	终点 at L2=	ı ا	n			
	C					
添加						
刪除						
显示全部计算	结果	确定	取消			

图 4.10.7.b 加载模式

在 C.阶段-激活标签中,可以控制腰梁的激活。

腰梁数据						×
A. 腰梁	数据 B.	加载模式	C. 阶段-激	活 D.	Joints	
「激活」	بالفريد وكروك	æ				
▼ 用ノ	"目定入激:	石				
	阶段					
▶ 0						
1						
2	v					
3	V					
*						
显示组	2部计算结:	果		确定		取消
显示组	2部计算结:	果		确定		取消

图 4.10.7.c 腰梁阶段-激活标签

对话框中包含以下选项:

参数	描述
名称	定义腰梁名称
标高	定义腰梁标高
腰梁截面	定义或编辑腰梁截面
墙体轮廓	选择墙体轮廓
墙段	选择墙段
起始节点	选择起始节点和相连的腰梁编号
终点节点	选择终点节点和相连的腰梁编号
支撑编号	选择支撑编号
加载模式	选择加载模式(添加/删除)
设计断面	从创建的模式中选择设计断面
支撑编号	选择支撑编号
起点/终点	通过输入起点和终点定义荷载长度
激活阶段	选择再哪个阶段激活腰梁
显示全部计算结果	弹出腰梁计算结果的 XML 文件

双击二维平面视图中的支撑或斜撑,或者双击 3D 标签下,树型视图中支撑或斜撑列表中的编号,将弹出 3D 支撑和斜撑对话框。

3D Struts and Rake	ers			×
B0 B1 B2 B3 B4	名称 B9 选择支撑断面 PM600	X19 - Edit section	激活 □ 自定	义激活方式
86 87 88	🔲 Use Hydraulic or mechanic	al strut	▶ 0 1	
B10 B11 B12	 起始节点 ◎ 选择分段構梁节点 选择分段構梁 B 0 		2	
B13 B14 B15 B16	选择横梁节点 NO 沿横梁方向偏移 16.63	*	*	
B18 B19	 终点节点 ● 选择分段構梁节点 选择分段横梁 B_1 选择横梁节点 №1 沿横梁方向偏移 13.60 	▼ ▼]488888£		
新建 删除			确定	取消

图 4.10.8 三维支撑和竖向斜撑对话框

对话框中包含以下选项:	
参数	描述
名称	定义支撑或斜撑名称
支撑截面	定义支撑或斜撑截面
腰梁段	选择支撑起点和终点所在的腰梁段编号
腰梁节点	定义支撑起点和终点所在的腰梁节点编号
沿腰梁偏置距离	定义支撑沿着腰梁 Y 轴方向起点和终点偏置距离
激活阶段	选择支撑激活阶段

双击二维平面视图中的锚杆,或者双击 3D 标签下,树型视图中锚杆列表中的编号(首 先选择显示支撑标高>>锚杆所在标高),将弹出 3D 锚杆对话框。

ors (Tie	eba	acks) and Tierods									×	
		夕称]	-激	舌		٦
1		・	Sec	tior	u−0		Ŧ			自定	义激活方式	
		与Z方向夹20	deg	与	XY平面	0		deg				
		☑ 自动匹配角度(当1	更用分射	- 2横3	(限時)						阶段	
		左侧自11.389	m		左侧	8		m		0		
1	=									1		
		起始节点								2	V	
		◎ 分段橫梁	A_0				*			з		
		节点沿着橫梁偏移	1.5		m	NO	*		*			
		🔘 常规节点	NO									
		■ 指定终点										
	Ŧ									_		
删除									确	定] 取消	
	ors (Tie	ors (Tieba	Server (Tiebacks) and Tierods 名称 送择锚杆断面 与Z方向其20 回 自动匹配角度(当位 左侧自11.389 起始节点 ③ 分段橫梁 节点沿着横梁偏移 ⑦ 常规节点 間除	名称 通 送择锚杆断面 Sec 与Z方向夹20 deg 「自动匹配角度(当使用分組 左側自11.389] m 起始节点 ③ 分段横梁 A_0 节点沿着横梁偏移 1.5 ⑦ 常规节点 20 11 389 第 1.5 ○ 常规节点 15 1.5 ○ 常规节点 町除 10	Server (Tiebacks) and Tierods 名称 送择锚杆断面 送择锚杆断面 Section 与2方向其20 deg 与2方向其20 deg 「自动匹配角度(当使用分段横梁 左侧自11.389 市点沿着横梁偏移 1.5 常规节点 20 「指定终点	ark 回 送择锚杆断面 Section=0 与Z方向夹20 deg 与立方向夹20 deg 「自动匹配角度(当使用分段横梁时) 左侧自11.389 m 上起始节点 ④ 分段横梁 A_0 节点沿着横梁偏移 1.5 「指定终点	名称 送择锚杆断面 Section=0 与Z方向其20 deg 与3D匹配角度(当使用分段横梁时) 左侧自11.389 m 起始节点 ④ 分段横梁 ▲_0 节点沿着横梁偏移 1.5 第級节点 30 一 指定终点	名称 送择锚杆断面 Section=0 支方向其20 deg 与2方向其20 deg ● 自动匹配角度(当使用分段横梁时) 左侧自11.389 m 左侧自11.389 m 之侧右前点 ● 分段横梁 A_0 * 节点沿着横梁偏移 1.5 ● 常规节点 ● 常规节点 ● 常规节点 ● 常規节点	名称 送择锚杆断面 Section=0 与Z方向其20 deg 与Z方向其20 deg 「自动匹配角度(当使用分段横梁时)」 左侧自11.389 m 起始节点 ④ 分段横梁 ▲_0 ~ 节点沿着横梁偏移 1.5 ● 常规节点 ● 常规节点 ● 指定终点	名称 送择锚杆断面 Section=0 与Z方向共20 deg 与Z方向共20 deg 与Z方向共20 deg 「日劼匹配角度(当使用分段横梁时) 左側自11.389 m 起始节点 m 砂段横梁 A_0 * 方点沿着横梁偏移 1.5 * 消息若積 小小市点 ************************************	and Tierods 名称 选择锚杆断面 Section=0 与Z方向夹20 deg 与Z方向夹20 deg 与Z方向夹20 deg 与Z方向夹20 deg 「自动匹配角度(当使用分段横梁时)」 左侧自11.389 m 左侧自11.389 m 之份長横梁 A_0 * 市点沿着横梁偏移 1.5 * 常规节点 M0 * 指定终点	名称 ※活 送择锚杆断面 Section=0 送择锚杆断面 Section=0 与Z方向决20 deg 与XY平面0 deg 「 自动匹配角度(当使用分段横梁时) 左侧自11.389 m 左侧1 砂段横梁 A_0 1 一 前規节点 前規节点 N0 第规节点 N0 前定终点

图 4.10.9 三维锚杆对话框

对话框中包含下列选项:

参数		描述
名称	定义锚杆名	名称
锚杆截面	定义锚杆截	或面
安装角 Z	定义锚杆到	安装角
角度 XY	定义锚杆上	与 XZ 平面的夹角
自动匹配角度	选项:当任	使用腰梁时自动匹配角度
自由段长度	锚杆自由	没长度
嵌固段长度	锚杆嵌固具	没长度
使用腰梁段	选择使用的	的腰梁段编号
沿着 Y 方向腰梁节点偏置距离	定义沿着`	Y 方向指定腰梁节点,锚杆偏置距离
使用一般节点	选项:使用	用一般节点
指定终点	选择:指定	2锚杆终点(当锚杆当做拉杆连接相对的墙时)

▶ 节点

双击 3D 标签下,树型视图中节点列表中的编号,将弹出三维节点对话框。在对话框中,可以添加,删除或修改 3D 节点坐标。3D 节点有两种类型:节点坐标固定不变的固定节点

以及每个阶段中 X 和 Y 坐标固定,而 Z 坐标可变的可变节点。3D 面通过可变节点定义。

图 4.10.10 三维节点对话框

No	Nodes with Variable Elevations									
	节点名称及		_#	点	高程					
	名称	X	Y				Z			
	NVO	-50	-400		•	0	0			
	NV1	-50	400			1	0			
	NV2	50	400			2	0			
	NV3	50	-400			з	0			
	,				*					
						72	2			
						t)#		F .		

图 4.10.11 变化的三维节点对话框

▶ 3D轮廓

双击 3D 标签下,树型视图中轮廓列表中的轮廓对象,将弹出 3D 轮廓对话框。在对话框中,使用 3D 节点坐标,可以添加,删除或修改轮廓。

三维边界				x
边界	边界数	据		
Project Perimete Excavation Perim	名称	Project Peri	imeter	
	🔲 打开	F边界端点(不	连接起始和终点	気帯点
		节点	偏移	
	•	V: NVO	• 0	
		V: NV1	▼ 0	
		V: NV2	• 0	
		V: NV3	▼ 0	
	*		-	
			٦ ٦	
	〔〕	倒节点顺序		
新建一刪除			确定即	『消』

图 4.10.11 三维轮廓对话框

▶ 3D 面

双击 3D 标签下,树型视图中三维面列表中的面对象,将弹出 3D 面对话框。在对话框中,使用 3D 轮廓,可以添加,删除或修改面。

三维面			x
三维面 Natural Surface	面数据 		激活及标高 将边界固定节点自定义Z应用 □ 云每へ№段
Excavation Surf:	 ☑ 自然面 ☑ 开挖面 	颜色	
	☑ 面中包含边界	Project Perimeter 👻	▶ 0 🔽 0
	□ 墙边界偏移 □ 白定以7()边界变节点)	0: Perimeter 0 👻	•
	□ 自定义Z(全部节点)	0	
	内部节点 四定卫点	节点变量Z	
	节点 *	节点 ★ ▼	
添加新的三维面		□ 白完义变节占 /值	
删除所选三维面			
			确定取消

图 4.10.12 三维面对话框

参数		描述
名称	定义选择面	的名称
添加新的 3D 面	添加新的面	
删除 3D 面	删除选择面	
自然面	选项:选择	为自然面
开挖面	选项:选择	为开挖面
面中包含轮廓	选项:面中	包含一个轮廓。可以从已经创建的轮廓中选择
使用墙轮廓偏移	选项:使用	墙轮廓偏移。可以从已经创建的轮廓中选择
自定义可变节点Z坐标	定义可变节	点标高
自定义所有节点Z坐标	定义所有节	点标高
每个阶段固定Z坐标	定义每个阶	段轮廓固定节点标高

下表中列出了可用参数列表:

▶ 墙体轮廓

双击 3D 标签下,树型视图中墙体轮廓列表中的墙体轮廓对象,将弹出墙体轮廓及墙段 对话框。在对话框中,使用设计断面中已创建的墙体截面,可以添加,删除或修改面。

墙体轮廓及片段														+		×	
墙的边界 Perimeter O		名称 Perime 设计断面	ter O Base mode	1	•		墙	We	JI 1		•				激活 ☑ 自 式	定义激活方	
	墙段			1	只使用;	边界	ļ	Ex	cavation	Perimeter	-					阶段	1
		名称	Node	1	Node 2	2	Toe Type		Li	12	Custom Design section	Design section	Wall		▶ 0 ★		
	•	WNO	NO	-	N1	•	0: Vse	•	0	0		0: Bas 💌	Left wall 🔻				
		WN1	N1	-	N2	•	0: Vse	•	0	0		0: Bas 🔻	Left wall 🔻				
		WN2	N2	•	N3	•	0: Vse	•	0	0		0: Bas 🔻	Left wall 🔻	1			
		WN3	N3	-	NO	-	0: Vse	-	0	0		0: Bas 🔻	Left wall 🔻				
	*			-		-		-]			-	-]			
新建 删除						_	**		0								
		从墙的边	2界添加墙						-					OK		Cancel	

图 4.10.13 墙体轮廓及墙段

当双击 2D 平面视图中的某一墙段时,将弹出编辑墙段对话框。

编辑墙段	
名称	
WNO	
选择设计断面和墙	
使用不同的设计断面和不同轮廓的墙Use a differend design section and wall from the wall perimeter	
设计断面 Base model ▼	
墙 Wall 1 🔻	
确定即消	

图 4.10.14 编辑墙段对话框

在对话框中可以修改墙段的设计断面和墙体属性。 也可以为该墙段选择一个不同的设 计断面,或者为整个周界范围的墙段赋予相同的设计断面和墙体属性。

下表中列出了对话框中可用的参数:

参数		描述	
名称	定义选中墙体	轮廓的名称	
新建	添加新的墙体	轮廓	
删除	删除选中的墙	体轮廓	
设计断面	选择设计断面		
墙体	选择用于所有墙段中墙体截面		
仅使用轮廓	选项: 仅使用面或开挖轮廓		
节点1	指定墙段的起	始节点	
节点 2	指定墙段的终	·点节点	
墙址类型	定义墙址长度		
L1-L2	长度.如果选择了使用自定义墙址类型		
自定义设计断面	选项:不同(或相同)设计断面的不同墙体截面		
激活	选项: 自定义	选择使用施工阶段墙轮廓的阶段	

▶ 结果

模型计算完成后,单击 3D 框架分析按钮,就进行 3D 框架分析。当 3D 框架分析完成 后,将弹出 3D 框架计算结果对话框。

• 3D 框架分析计算汇总表

3D 框架计算汇总-结果汇总标签

这个标签中列出了所有腰梁和支撑的结果。可以查看构件标高,弯矩,剪力,轴力,比 值和断面。

3D	框架计算汇总	-	Ξ.	•	-	A	A sum to a	-	100	
٦ د	总 橫梁结: ± 42	果 水平支撐	【結果 锚杆	「结果」造价(古算					
ſ	四挥 〇 見テ所有対	lea ()只見示法	圣的标高		Elev2			_	
Г		1384				横梁支援	结果(3D)			
Γ		Elev.	Moment	Shear	Axial	RAT	RAT M	RAT V	Section	*
Б) Name	(m)	(kN-m)	(kN)	(kN)	-	-	-		E
L	A_0	-2	0	0	0	0.017	0.017	0	H-Waler	
E	A_1	-2	0	0	0	0.008	0.008	0	H-Waler	
L	* 2	-2	0	0	0	0.008	0.008	0	H-Wolor	
						支撑和曲	杆结果 <mark>(3D)</mark>			
F						水平支持	结果(3D)			
L		Length	Moment	Axial force	RAT	Section				L L L
Þ	Name	(m)	(kaN-m)	(kN)	-	Name				
L	BO	2.121	1.5	0	0.001	PM600X19				
L	B1	6.401	13.7	0	0.01	PM600X19				-
						锚杆组	喆果 3D			
Γ		Free Length	Fixed Length	Section	Axial force	RAT	RAT GEO	RAT STR		<u>^</u>
Þ	• Name	(m)	(m)	Name	(kN)	-	-	-		
	AO	11.389	8	Section-O	0	0	0	0		
	A1	11.389	8	Section-0	0	0	0	0		+
										退出

图 4.10.15 三维框架计算汇总

3D 框架计算汇总-腰梁结果和支撑结果标签

这些标签中列出了和结果汇总标签中相同的结果,但是仅显示选中的构件对象。

3D 框架计算汇总-造价估计

3	D 框 汇总	梁计算汇总 【 横梁结果	水平支撑	结果 锚杆	结果 造价	估算		2	-	-			X	
	Cost vs. Stage Wall costs Support costs Walers costs Excavation costs Dewatering costs 🛛 🖉 🕨													
			Total cost \$	Wall cost \$	Tieback cost \$	Strut cost \$	Slab cost \$	Wale cost \$	Excavatio cost \$: Dewaterin cost \$	Cost index \$/m2			
	Þ	Stage O	674544	674544	0	0	0	0	0	0	0/m^2			
		Stage 1	674544	674544	0	0	0	0	0	0	2230.9			
		Stage 2	946832	674544	272288	0	0	17440	0	0	3131.5			
		Stage 3	1009349	674544	272288	62517	0	34879	0	0	556.4/m^2			
L	-			_				_					лещ	

图 4.10.15 三维框架计算-造价估计标签-造价和阶段

4.11 输出 DXF 文件(DXF 模块)

使用 DXF 模块可将所有的 2D 部分资料转为 DXF 格式,节约时间和精力。软件可以将 所有设计断面、墙截面及俯视图导出 DXF 格式。用户可以轻松的通过一个对话框管理导出 字体的大小。

图 4.11.1 导出 DXF-设计断面页面

在导出 DXF 对话框的设计断面页面中,用户可以为所选设计断面的每个施工阶段创建 包含 DXF 图形的 DXF 文件。具体包括以下选项:

- 选择设计断面
- 选择施工阶段
- 选项: 渲染未激活支撑
- 选项: 渲染尺寸
- 选项: 渲染土层
- 选项: 渲染钻孔
- 选项: 渲染所有施工阶段(该选项冻结选择施工阶段选项,激活列数选项)
- 设置比例

DXF导出视图	Courses Connections Connection & and the	
File Templates		
选择设计断面 1: Design Section	▼	
设计断面 墙截面 草图 结果图表		
▼ 显示扩展墙信息		
	D25 — D25	
	¥-¥	
	7.00 cm ->+<>+<	
	frað	
Scale 1:200	Wall Section #1	
-0	Diaphragm	
设置	Thick: 90 cm, 6 L-D25, 8 R-D25/1 m	
导出PDF格式	FykRebais = 410 MPa, FCK= 200Pa	
🕅 Use template		
Coords: 10.79,-3.36 - [Screen: 813.0,352.0] - Current Sta	ge: 0 - Lines: 0, Polylines: 0, Texts: 2, Hatches: 3, Block Refs: 0	

图 4.11.2 导出 DXF-墙截面页面

在导出 DXF 对话框的墙截面页面中,用户可以查看模型中的所有已创建墙截面,并将 其导出为 DXF 文件。页面中的选项可以显示模型中墙的扩展信息。

图 4.11.3 导出 DXF-草图页面

在导出 DXF 对话框的草图页面中,用户可以为所选设计断面的每个施工阶段创建包含 草图的 DXF 文件。具体包括以下选项:

- 选项: 渲染未激活支撑
- 选项:突出新支撑
- 选项: 渲染所有施工阶段(该选项冻结选择施工阶段选项,激活列数选项)

● 选项:显示/隐藏标高轴

图 4.11.4 导出 DXF-结果图表页面

在导出 DXF 对话框的结果图表页面中,用户可以为所选设计断面的每个施工阶段创建 包含各种结果图表的 DXF 文件。具体包括以下选项:

- 选项:固结压力图
- 选项:保持统一的压力比例
- 选项: 渲染所有施工阶段(该选项冻结选择施工阶段选项,激活列数选项)
- 选项:放置图表的截断距离
- 选项:显示/隐藏标高轴

点击按钮	管理图 >>	,用户可以选择需要显	显示的图表内容。具体包括以下
选项:			
		Net total wall pressures (factored)	
		Effective hor. soil pressures	
		Surcharge	
		Seismic pressures	
		Net Factored Water Pressures	
		Water Pressures	
		Total Apparent Pressures	
		Total vertical soil pressures	
		Effective vertical soil pressures	
	\checkmark	Wall Bending	
	\checkmark	Wall Shear	
		Axial wall force (+comp)	
		Wall Displacement	
		Hydraulic Gradient	

点击按钮	设置	,弹出 DXF 视图设置对话框。	图 4.11.5 到 4.11.9 表示了各个选项。
------	----	------------------	----------------------------

DXF View Settings				×
General Settings Layer Definitions	Design Section	Wall Sections	Sketch View	Pres 🔹 🕨
Fonts	-Design Section	. Scale		
Drawing Font Arial 👻	Drawing scal	250	•	
Use Custom Font	Text height	0.5		
	-Dimensioning-			
	📝 Show vertic:	al support spa	cing	
General Dimensioning Settings	V Show support	t elevations		
🔲 Dimension text inside line	Show wall lo	engths		
🥅 Vertical dimension text autorotate to	🔽 Show wall ei	levations		
🔲 Vertical dimension text horizontal	Show wall e	lements length:	5	
🕼 Show support labels	Show wall e	lements elevat:	ions	
📝 Tieback partial dimensions as text	📝 Show distand	ce between wall	ls	
Import Settings Export Settings	L		ОК	Cancel

图 4.11.5 DXF 视图设置-总体设置

DeepEX2018 用户手册

图 4.11.6 DXF 视图设置-设计断面选项

DXF View Settings				×
General Settings Layer Definitions	Design Section	Wall Sections	Sketch View	Pres 4 🕨
Design Section View 🗸	-Wall Section S	cale		
WALL WALL_INACTIVE SURFACES SOIL SUPPORT_ACTIVE LAGGING REBARS BEAMS DIMENSIONS WATER SUPPORT_ACTIVATED WALLEL_ACTIVATED 0	Drawing scal Text height Dimensioning Show wall di	250 0.5 mensions	▼ 	
Import Definitio Export Definitio				
Import Settings Export Settings			OK C	Cancel

图 4.11.7 DXF 视图设置-墙截面选项

eneral Settings Layer Definitions	Design Section Wall Sections Sketch View Pres
Design Section View WALL WALL_INACTIVE SURFACES SOIL SUPPORT_ACTIVE LAGGING REBARS BEAMS DIMENSIONS WATER SUPPORT_ACTIVATED WALLEL_ACTIVATED 0 Import Definitio Export Definitio	Sketch View Scale Drawing scal 250 • Text height 0.5 Dimensioning Show vertical support spacing Show vertical support spacing Show wall lengths Show wall lengths Show wall elements lengths Show wall elements elevations
Import Settings Export Settings	OK Cancel

DXF View Settings	X
General Settings Layer Definitions	Wall Sections Sketch View Pressures View
Design Section View 👻	Pressures View Scale
WALL	Drawing scal 250 🗸
WALL_INACTIVE	Text height 0.5
SURFACES	
SOIL	
SUPPORT_ACTIVE	Dimensioning
SUPPORT_INACTIVE	👿 Show vertical support spacing
LAGGING	V Show support elevations
REBARS	Show wall lengths
BEAMS	
DIMENSIONS	Show wall stevations
WATER	Show wall elements lengths
SUPPORT_ACTIVATED	🥅 Show wall elements elevations
WALLEL_ACTIVATED	
0	
Import Definitio Export Definitio	
Import Settings Export Settings	OK Cancel

图 4.11.9 DXF 视图设置-压力视图选项

4.12 重力式挡墙(重力式挡墙模块)

DeepEX 提供了重力式挡墙分析工具。该选项在附加的重力式挡墙模块中可用。用户可以创建挡墙的基本类型,比如全重力式或墙肢式。可以考虑墙身弯曲、加筋等。注意重力式 挡墙也可以与桩一起用作桥墩或桥座。

在模型中创建重力式挡墙,可以在"编辑墙数据"对话框中进行定义(图 4.12.1).重 力式挡墙模块激活之后,就会出现"使用重力式挡墙截面"选项。

在模型区域双击墙便可弹出"编辑墙数据"对话框。

+1 编辑墙体数据	×
+1 编辑培体数据 General Advanced features ↓ ▶ 1. 名称 ************************************	道体截面 (平面图) · · · · ·
Show full calculatio	确定

图 4.12.1 编辑墙数据对话框-"使用重力式挡墙截面"选项

此处可以定义挡墙尺寸和加筋等。

1. 指土堆数据		hop into
选择墙的类型	尺寸 材料 结果 说明	
	*** 00	
	高度 00	Retaining wall 0
	基础 80	使用 P1 P2 钢筋 S 編号 清除 Ast 20m 30m 30m 30m
	而將 30	A B #9 50 1 1.18 6.4516
		B C 49 50 1 1.18 6.4516
	肥高 重点上角 20	C D #9 50 1 1.18 6.4516
从既有墙类型中选择	親厚 20	D E #9 50 1 1.18 6.4516
·		E F #9 • 50 1 1.18 6.4516
		F G #9 \$50 1 1.18 6.4516 60 m
	9년 1월 20	𝓝 𝑘
H-11 Arrow 0	ATT 10	Image: Weight of the second
nall type 0		I J #9 ▼ 50 1 1.18 6.4516
		☑ J K #9 ▼ 50 1 1.18 6.4516
		V K A #9 50 1 1.18 6.4516
		20 m 20 m
Wall type 1	V 3850	
	高度 30	
	距离 坚立拐脚 40	30 m 30 m
	F = 15	
	** **	
Wall type 2	🔽 排水背面	K
		40 m 15 m 20 m
	🔽 自墙体边缘计算主动土压力	Fier options (3D widths and spacings)
		[Iz pier (3D)
	收缩筋 # #8 👻	· 個定 - 私//
Wall trma 3		

图 4.12.2 挡墙数据对话框

与在对话框左侧所选的墙类型相关联,可以定义几个尺寸属性(表 4.12.1).重力式挡墙的参考坐标为墙肢最左侧的角部(或墙顶)。该坐标从墙数据主对话框中定义。

~ 4.12.1 八寸周住				
高度	总墙高(包括止滑键)			
基底	总基底宽度			
顶宽	墙顶宽度			
到左上角的距离	从墙最左侧到左上角的距离			
踵厚	推力侧基底厚度			
趾宽	从主墙体端部到墙趾端部的距离			
趾厚	抗力侧基底厚度			

表 4.12.1 尺寸属性

软件中可选的挡墙类型有:

符号/选项	描述
使用止滑键	选择该选项,则在墙下使用被动止滑键
背面排水	当水位在墙底以上时,墙背面排水

从墙边缘计算推动压力:在默认模式中,稳定安全系数由直接作用在墙主动侧的土和其他压 力来计算。然而该假定会得到非常好的近似结果,理论上主动水平压力可以作用在墙边缘。 通过选择此选项,安全系数由直接作用在墙竖向边缘的压力来计算,墙的竖向边缘从最左侧 墙底坐标起算(如果压力为从左到右),或者从最右侧坐标起算(如果压力从右到左)。如 果选择该选项,则作用在此竖向边缘上的推动土压力总作为主动压力或静止压力。

加筋数据表:可以在每个墙面上使用钢筋。需要注意 DeepEX 不考虑延展长度和钢筋弯曲。 工程师的最终责任是决定钢筋如何弯曲、切割或成形。DeepEX 也将计算和输出所有弯曲和 剪切能力。